Medium-Voltage Switchgear
Type 8DH10
up to 24 kV, Gas-Insulated, Extendable

Medium-Voltage Switchgear
INSTALLATION AND OPERATING INSTRUCTIONS

Order No.: 818-6602.0
Revision: 05
Issue: 24-10-2008
About these Instructions

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation or operation.

For details about technical design and equipment like e.g. technical data, secondary equipment, circuit diagrams, please refer to the order documents.

The switchgear is subject to continuous technical development within the scope of technical progress. If not stated otherwise on the individual pages of these instructions, we reserve the right to modify the specified values and drawings. All dimensions are given in mm.

For further details, e.g. about additional equipment and information about other switchgear types, please refer to catalogues HA 41.11 and HA 40.1 (Switchgear 8DJ and 8DH: General Part).

Should further information be desired or should particular problems arise which are not covered sufficiently by these instructions, the matter should be referred to the competent Siemens department.

The contents of this instruction manual shall not become part of or modify any prior or existing agreement, commitment or relationship. The Sales Contract contains the entire obligations of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.
Contents

Safety instructions .. 5
1 Signal terms and definitions .. 5
2 General instructions .. 5
3 Due application ... 6
4 Qualified personnel .. 6

Description ... 7
5 Features ... 7
6 Panel versions (examples) ... 9
7 Components ... 11
7.1 Circuit-breaker ... 11
7.2 Three-position switch-disconnector 12
7.3 Three-position disconnecting circuit-breaker (type LST) .. 13
7.4 Operating mechanisms for three-position switch-disconnector and three-position disconnecting circuit-breaker (type LST) .. 14
7.5 Current and voltage transformers 16
7.6 Protection and control equipment 16
7.7 HV HRC fuse assembly ... 17
7.8 Interlocks ... 19
7.9 Busbars .. 20
7.10 Cable connection .. 20
7.11 Ready-for-service indicator ... 21
7.12 Voltage detecting systems .. 22
7.13 Short-circuit/earth-fault indicators 25
7.14 Accessories .. 26

8 Technical data .. 27
8.1 Complete switchgear .. 27
8.2 Standards, specifications, guidelines 32
8.3 3AH vacuum circuit-breaker 34
8.4 Three-position switch-disconnector 38
8.5 Three-position disconnecting circuit-breaker (type LST) .. 39
8.6 Selection of HV HRC fuse links 40
8.7 Rating plates .. 45

9 Switchgear maintenance .. 46

10 End of service life .. 46

Installation ... 47
11 Before installation .. 47
11.1 Preliminary clarifications ... 47
11.2 Switchgear room ... 47

11.3 Intermediate storage ... 47
11.4 Tools / Auxiliary means ... 49
11.5 Installation and fixing material 49
12 Unloading and erecting the switchgear 49
12.1 Transport unit and packing .. 49
12.2 Completeness and transport damage 50
12.3 Transport to the place of installation (switchgear room) .. 51
12.4 Checking the ready-for-service indicator 53
13 Assembling the switchgear ... 54
13.1 Floor openings and fixing points 54
13.2 Extending existing switchgear or replacing components .. 55
13.3 Bolting transport units together 57
13.4 Fastening the switchgear to the foundation 58
13.5 Assembling the busbars ... 59
13.6 Installing metering panels type ME1 65
13.7 Connecting voltage transformers in metering panels type ME1 .. 71
13.8 Mounting earthing bolts in metering panels type ME1 .. 74
13.9 Mounting earthing accessories in the metering panel type ME1 .. 76
13.10 Switchgear earthing .. 77
13.11 Installing the earthing busbar 77
13.12 Installing low-voltage compartments 78
14 Electrical connections ... 79
14.1 Connecting high-voltage cables 79
14.2 Connecting double cables and surge arresters 84
14.3 Cable connection with cable-type current transformers .. 84
14.4 Connecting voltage transformers at the cable feeder .. 86
14.5 Installing/removing busbar voltage transformers 88
14.6 Connecting auxiliary circuits 92
14.7 Correcting circuit diagrams .. 94
15 Commissioning .. 95
15.1 Final work ... 95
15.2 Checking accessories .. 96
15.3 Instructing operating personnel 96
15.4 Function test / Test operation 96
15.5 Preparing the power-frequency voltage test 98
<table>
<thead>
<tr>
<th>15.6</th>
<th>Applying operational voltage (high voltage)</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>16</td>
<td>Indicators and control elements</td>
<td>102</td>
</tr>
<tr>
<td>17</td>
<td>Operating the three-position switch-disconnector/disconnecting circuit-breaker (type LST)</td>
<td>103</td>
</tr>
<tr>
<td>17.1</td>
<td>Operations</td>
<td>104</td>
</tr>
<tr>
<td>17.2</td>
<td>Protection tripping for the three-position switch-disconnector with spring-operated/stored-energy mechanism</td>
<td>105</td>
</tr>
<tr>
<td>17.3</td>
<td>Protection tripping with the three-position disconnecting circuit-breaker (type LST)</td>
<td>106</td>
</tr>
<tr>
<td>17.4</td>
<td>Ring-main panels, transformer panels and disconnecting circuit-breaker panels (type LST): Operating the three-position switch</td>
<td>107</td>
</tr>
<tr>
<td>18</td>
<td>Circuit-breaker panels: Operating vacuum circuit-breaker type 3AH</td>
<td>108</td>
</tr>
<tr>
<td>18.1</td>
<td>Closing the circuit-breaker locally</td>
<td>109</td>
</tr>
<tr>
<td>18.2</td>
<td>Opening the circuit-breaker locally</td>
<td>110</td>
</tr>
<tr>
<td>18.3</td>
<td>Charging the stored-energy spring mechanism manually</td>
<td>110</td>
</tr>
<tr>
<td>18.4</td>
<td>Closing the three-position switch-disconnector in the circuit-breaker panel (with type 3AH) (with optional interlock)</td>
<td>112</td>
</tr>
<tr>
<td>18.5</td>
<td>Opening the three-position switch-disconnector in the circuit-breaker panel (with type 3AH) (with optional interlock)</td>
<td>113</td>
</tr>
<tr>
<td>18.6</td>
<td>Three-position switch-disconnector in circuit-breaker panel (with type 3AH): Switch position EARTHED (with optional interlock)</td>
<td>115</td>
</tr>
<tr>
<td>18.7</td>
<td>Three-position switch-disconnector in circuit-breaker panel (with type 3AH): Switch position DE-EARTHED (with optional interlock)</td>
<td>116</td>
</tr>
<tr>
<td>19</td>
<td>Verification of safe isolation from supply</td>
<td>117</td>
</tr>
<tr>
<td>20</td>
<td>Replacing HV HRC fuse links</td>
<td>118</td>
</tr>
<tr>
<td>21</td>
<td>Cable testing</td>
<td>121</td>
</tr>
<tr>
<td>21.1</td>
<td>Cable testing via plug-in cable systems</td>
<td>121</td>
</tr>
<tr>
<td>21.2</td>
<td>Cable sheath testing</td>
<td>123</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>124</td>
</tr>
</tbody>
</table>
Safety instructions

1 Signal terms and definitions

<table>
<thead>
<tr>
<th>Symbols used</th>
<th>Operation symbol: Identifies an operation. Asks the operator to perform an operation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Result symbol: Identifies the result of an operation.</td>
</tr>
</tbody>
</table>

2 General instructions

Independently of the safety instructions given in these operating instructions, the local laws, ordinances, guidelines and standards for operation of electrical equipment as well as for labor, health and environmental protection apply.

Five Safety Rules of Electrical Engineering

The Five Safety Rules of Electrical Engineering must generally be observed during operation of the products and components described in these operating instructions:

- Isolating.
- Securing against reclosing.
- Verifying safe isolation from supply.
- Earthing and short-circuiting.
- Covering or barriering adjacent live parts.
3 Due application

The switchgear corresponds to the relevant laws, prescriptions and standards applicable at the time of delivery. If correctly used, they provide a high degree of safety by means of logical mechanical interlocks and shockproof metal enclosure of live parts.

<table>
<thead>
<tr>
<th>DANGER!</th>
<th>The perfect and safe operation of this switchgear is conditional on:</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔴</td>
<td>Observance of operating and installation instructions.</td>
</tr>
<tr>
<td>🔴</td>
<td>Qualified personnel.</td>
</tr>
<tr>
<td>🔴</td>
<td>Proper transportation and correct storage of the switchgear.</td>
</tr>
<tr>
<td>🔴</td>
<td>Correct installation and commissioning.</td>
</tr>
<tr>
<td>🔴</td>
<td>Diligent operation and maintenance.</td>
</tr>
<tr>
<td>🔴</td>
<td>Observance of the instructions applicable at site for installation, operation and safety.</td>
</tr>
</tbody>
</table>

4 Qualified personnel

Qualified personnel in accordance with these instructions are persons instructed by the Switchgear Factory Frankfurt who are familiar with transport, installation, commissioning, maintenance and operation of the product and have appropriate qualifications for their work, e.g:

- Training and instruction or authorization to switch on, switch off, earth and identify power circuits and equipment / systems as per the relevant safety standards.
- Training regarding the applicable specifications for the prevention of accidents and the use of appropriate safety equipment.
- Training in first aid and behavior in the event of possible accidents.
Description

5 Features

Typical uses Extendable fixed-mounted switchgear 8DH10 is mainly used in consumer and transfer substations for power supply through ring-main cables, as well as in industrial distribution systems.

It is available for rated voltages up to 24 kV and rated currents up to 630 A.

Technology • Factory-assembled, type-tested and metal-enclosed switchgear for indoor installation
 • Partition class PM
 • Loss of service continuity category: LSC 2
 • Individual panels and/or panel blocks can be freely combined to a switchgear assembly

![Diagram with labels](image)

Fig. 1: Disconnecting circuit-breaker panel type LST, circuit-breaker panel type LS1, transformer panel type TR, ring-main panel type RK, billing metering panel type ME1

- Vacuum circuit-breaker
- Three-position switch-disconnector
- Disconnecting circuit-breaker
- Voltage transformer
- Current transformer
- Capacitive voltage detecting system
- HV HRC fuse
- Cable (not included in the scope of supply)
Description

- Circuit-breaker panels with maintenance-free three-pole indoor vacuum circuit-breakers 3AH for rated voltages from 7.2 to 24 kV
- Disconnecting circuit-breaker panels (type LST) for rated voltages from 7.2 to 24 kV
- Installation and extension without gas work
- Solid-insulated busbar system
- Cable connection for outside cone
- Ecological production and disposal

Personal safety
- Safe-to-touch due to metal enclosure of live parts
- Clear mimic diagram
- HV HRC fuses and cable sealing ends are only accessible when the feeders are earthed
- Operation is possible only when the enclosure is closed
- Logical mechanical interlocking
- Capacitive voltage detection system for verification of safe isolation from supply
- Earthing of outgoing feeders by means of make-proof earthing switches

Security of operation and availability
- Hermetically sealed primary enclosure, independent of environmental effects such as dirt, moisture and small animals
- Welded switchgear vessel, sealed for life
- Switch operating mechanisms accessible outside the switchgear vessel
- Switchgear interlocking by means of logical mechanical interlocking

Cost-efficiency
- Extremely low "life-cycle costs" and maximum availability as a result of:
 - Maintenance-free concept
 - Climatic independence
 - Minimum space requirement
 - Long service life
6 Panel versions (examples)

Circuit-breaker panel type LS1

Transformer panel type TR

Ring-main panel type RK

Billing metering panel
Circuit-breaker panel type LST1 with disconnecting circuit-breaker

Legend:
1 Option: Low-voltage compartment
2 Niche for customer-side low-voltage equipment, removable cover
3 Position indicator for load-break function "CLOSED-OPEN"
4 Position indicator for earthing function "OPEN-EARTHED"
5 Ready-for-service indicator
6 Rating and type plate
7 Mimic diagram
8 Option: Short-circuit/earth-fault indicator
9 Sockets for voltage detecting system
10 Arrangement of the busbars
11 Feeder designation label
12 Option: Locking device for three-position switch-disconnector or three-position disconnecting circuit-breaker (type LST1)
13 Manual operation for the mechanism of the earthing function
14 Manual operation for the mechanism of the load-break function or the circuit disconnecting/breaking function
15 Interlock of the cable compartment cover
16 Arrangement of the cable connections
17 Busbar system
18 Switchgear vessel, filled with insulating gas
19 Busbar connection
20 Pressure relief device
21 Partition for busbar
22 Earthing busbar
23 Three-position switch-disconnector
24 Spring-operated mechanism
25 Bushing for cable plug with bolted contact (M16)
26 Option: Cable T-plug
27 Cable compartment cover
28 Cable compartment
29 Cable bracket
30 Earthing connection
31 HV HRC fuse assembly, cover removed
32 Handle for replacing the HV HRC fuse-link
33 Interlock for HV HRC fuse assembly
34 Cover for HV HRC fuse compartment
35 Spring-operated/stored-energy mechanism
36 Bushing for cable plug with plug-in contact
37 Option: Cable elbow plug with plug-in contact
38 Position indicator for load-break function "CLOSED-OPEN", if applicable with "HV HRC fuse tripped" or "shunt release tripped"
39 Cover to the busbar connection and to the instrument transformers, screwed on
40 Voltage transformer type 4MR
41 Current transformer type 4MA7
42 Cover to busbar compartment, screwed on
43 Option: SIPROTEC bay controller
44 Low-voltage compartment (standard)
45 Opening for the hand crank - for closing with manual operating mechanism, - for emergency operation with motor operating mechanism
46 Mechanism box with operating mechanism
47 Mechanical ON pushbutton (not supplied with spring-operated mechanism)
48 Mechanical OFF pushbutton
49 Operations counter
50 “Spring charged” indicator
51 Vacuum interrupter
52 Position indicator
7 Components

7.1 Circuit-breaker

Design

The Siemens vacuum circuit-breaker type 3AH is a three-pole indoor circuit-breaker for rated voltages of 7.2 kV up to 24 kV.

The circuit-breaker consists of the following components:
- Operating mechanism box with stored-energy spring mechanism and control elements
- Three breaker poles with vacuum interrupters
- Mounting plate
- Operating rods for contact operation, sealed towards the container front (mounting plate) in a movable and gas-tight way via metal bellows.
The operating mechanism box accommodates all electrical and mechanical components required for closing and opening the circuit-breaker.

3AH circuit-breakers need no opening spring, as the contact pressure springs have an opening effect in this pole version.

The operating mechanism box is closed by a removable cover containing openings for the control elements and indicators.

The circuit-breaker is closed by pressing the ON-pushbutton. The transmission of motions to the breaker poles is performed by metal bellows. The motor recharges the closing spring immediately after.

If the motor supply voltage fails, the spring can be charged manually by means of a hand crank. To do this, there is an opening in the cover, with the hand crank coupling of the gear behind. The charging condition of the spring can be read on the indicator.

The operating cycle counter shows the number of charging processes.

The rating plate is mounted on the operating mechanism box.

The following operating mechanism versions are available:

- Manual spring-operated mechanism
- Manual operating stored-energy mechanism
- Motor operating stored-energy mechanism

Equipment:

- Electrical operating mechanism (charging motor) with mechanical and electrical anti-pumping device (M1)
- Closing solenoid (Y9)
- Shunt release (Y1)
- Low-voltage plug connector with 10-pole wiring (X09)
- Auxiliary switch (S1)
- Position switch for “closing spring charged” indication (S4)
- Circuit-breaker tripping signal, cutout switches (S6, S7)
- Operating cycle counter
- Mechanical interlock

Additional equipment:

- Extended auxiliary switch (S1)
- Shunt release (Y2)
- Undervoltage release (Y7)

In addition to the series shunt release (Y1), 3AH circuit-breakers can be equipped with a maximum of two releases.

7.2 Three-position switch-disconnector

- Designed as a multi-chamber switch incorporating the functions of a switch-disconnector and a make-proof earthing switch with the switch positions: “CLOSED - OPEN - EARTHED”
- Operation via gas-tight, welded metal bellows bushing at the front of the switchgear vessel
Mode of operation

The switch shaft with the moving contacts rotates inside the chamber containing the fixed contacts. Compression vanes, which rotate in conjunction with the switch shaft, divide the arcing chamber into two subchambers, each of which changes in conjunction with the rotation. During the switching movement, the compression vanes generate a pressure difference between the subchambers. The SF₆ gas flows through a nozzle, causes a directional blow-out of the breaking arc and quenches it rapidly. Interlocking is not necessary as the "CLOSED" and "EARTHED" functions cannot be implemented simultaneously.

Switch positions of the three-position switch-disconnector

1. **CLOSED position**
2. **OPEN position**
3. **EARTHED position**

Features

- Three-position disconnecting circuit-breaker (type LST) with the switch positions CLOSED-OPEN-EARTHED
- Operated via gas-tight welded metal bellows bushing at the front of the switchgear vessel

Mode of operation

In a gas-tight welded stainless-steel vessel without seals, the disconnecting circuit-breaker breaks rated currents up to 630 A and short-circuit currents up to 20 kA. The rot-arc principle breaks short-circuit currents safely. For example, the disconnecting circuit-breaker (type LST) can be used in feeder panels for transformer ratings above 630 kVA or in feeder or transfer panels in secondary distribution systems.
7.4 Operating mechanisms for three-position switch-disconnector and three-position disconnecting circuit-breaker (type LST)

The three-position switch-disconnector or three-position disconnecting circuit-breaker (type LST) is operated from the switchgear front:

- Spring-operated mechanism for three-position switch-disconnector
- with "spring-operated CLOSED" and "spring-operated OPEN"

- Spring-operated / stored-energy mechanism for transformer panels
- with "spring-operated CLOSED" and "spring-operated OPEN" mechanism for installation in the three-position switch-disconnector
- with additional energy store for the function "stored-energy OPEN" after tripping by HV HRC fuse (striker pin tripping) or shunt release
• Spring-operated / stored-energy mechanism for circuit-breaker panels (type LST)
 - with "spring-operated CLOSED" and "spring-operated OPEN" for installation in the
 three-position disconnecting circuit-breaker
 - with additional energy store for the function "stored-energy OPEN" after tripping by
 protection relay (striker pin tripping) or shunt release

Options
• Motor operating mechanism for the switching functions CLOSE and OPEN:
 Operation:
 - Remote operation (standard) applied to terminal
 - Local operation by momentary-contact rotary control switch (option)
 - Switching to EARTH and emergency operation with normal operating lever by hand

• Shunt release (f-release)
 - Spring-operated/stored-energy mechanisms can be equipped with a shunt release.
 Remote electrical tripping of the three-position switch-disconnector / disconnecting
 circuit-breaker (type LST) is possible via the magnetic coil of the shunt release, e.g.
 transformer overtemperature tripping.

• Auxiliary switch
 - Each operating mechanism of the three-position switch-disconnector / disconnecting
 circuit-breaker (type LST) can optionally be equipped with an auxiliary switch for the
 switch position indication.

• Wiring
 - Auxiliary switches, motor operating mechanisms or shunt-releases are wired to
 terminal strips. These are feeder-related and located next to the operating
 mechanism module of the feeder concerned. Customer-side cable routing is made
 from the side, if required from above to the terminal strip arranged at the operating
 mechanism module.

Fig. 3: Transformer panel
7.5 Current and voltage transformers

Current transformers

• According to IEC 60 044-1

Voltage transformers

• According to IEC 60 044-2

Technical data
The technical data of the current and voltage transformers must be taken from the associated project documentation.

7.6 Protection and control equipment

Protection and control equipment is equipped according to the customer’s specifications. The devices are normally installed in the low-voltage compartment or in the low-voltage niche. For details please refer to the relevant circuit documentation.
Description

7.7 HV HRC fuse assembly

Features

- HV HRC fuse-links according to DIN 43 625 (main dimensions) with striker in "medium" version according to IEC 60 282-1
 - as short-circuit protection before transformers,
 - with selectivity to upstream and downstream connected equipment,
 - single-phase insulated

- Requirements according to IEC 62 271-105 fulfilled by combination of HV HRC fuses with the three-position switch-disconnector
- Thermal striker tripping when the corresponding HV HRC fuse-link is used
- Climate-independent and maintenance-free, with fuse boxes made of cast resin
- Fuse assembly arranged above the switchgear vessel
- Fuse assembly connected to the three-position switch-disconnector via welded bushings and connection bars
- Fuses can only be replaced if feeder is earthed
- Option: “Tripped indication” of the transformer switch for remote electrical indication with 1NO contact

Fig. 6: Inserting an HV HRC fuse-link
Mode of operation

In the event that a HV HRC fuse-link has tripped, the switch is tripped via an articulation which is integrated into the cover of the fuse box.

In the event that fuse tripping fails, e.g. if the fault current is less than \(I_{\text{min}} \) or if the fuse has been inserted incorrectly, the fuse box is protected by thermal protection. The overpressure generated by overheating trips the switch via a diaphragm in the cover of the fuse box and via the articulation. This breaks the current before the fuse box incurs irreparable damage. The above thermal protection works independently of the type and design of the HV HRC fuse used. Like the fuse itself it is maintenance-free and independent of any outside climatic effects.

Schematic sketches for fuse tripping

Furthermore, the specified HV HRC fuses release the striker depending on the temperature and trip the switch-disconnector as early as in the fuse overload range. Impermissible heating of the fuse box can be avoided in this way.
7.8 Interlocks

- The switching gate of the three-position switch-disconnector or the three-position disconnecting circuit-breaker (type LST) prevents switching straight from CLOSED to EARTHED and vice-versa. The operating lever must be re-inserted in the OPEN position.

- The HV HRC fuse compartment cover can only be removed if the transformer feeder is earthed and the operating lever is removed. The three-position switch-disconnector can only be switched from the EARTHED position to the OPEN position if the HV HRC fuse compartment cover is closed and locked.

- Interlock between the 3AH5 circuit-breaker and the three-position switch disconnector (option). Circuit-breaker with:
 - Spring-operated mechanism:

 Circuit-breaker in OPEN position: The three-position switch-disconnector can be closed and opened. The circuit-breaker is interlocked against closing.

 Circuit-breaker in CLOSED position: No operations possible with the three-position switch-disconnector.

 - Spring-operated/stored-energy mechanism with closing solenoid and pushbutton:

 Circuit-breaker in OPEN position: The three-position switch-disconnector can be closed and opened. The circuit-breaker is interlocked mechanically and electrically against closing.

 Circuit-breaker in CLOSED position: No operations possible with the three-position switch-disconnector.

- The cable compartment covers can only be removed if the associated feeder is earthed.

- A closing lock-out (option) prevents the three-position switch-disconnector / disconnecting circuit-breaker from being switched to the CLOSED position if the cable compartment cover is removed.

- A de-earthing lock-out (option) prevents the three-position switch-disconnector / disconnecting circuit-breaker of the transformer panel or the disconnecting circuit-breaker panel from being switched from EARTHED to OPEN if the cable compartment cover is removed.
7.9 Busbars

Features
- Safe-to-touch as a result of the use to metal covers
- Plug in type, isolated
- Insensitive to pollution and condensation
- Switchgear extension or panel replacement possible without gas work
- Special busbar connections to air-insulated metering panels
- Option: Screened busbar: - Field control by means of electrically conductive layers on the silicone-rubber insulation - Installation of busbar current transformers possible
- Option: Capacitive voltage detection system for the busbar

Fig. 8: Busbar joints (metal cover removed)

7.10 Cable connection

Ring-main cable connection

Features
- Bushings with bolted contact (M16) as interface type “C” according to EN 50 181
- For rated normal currents 250/400/630 A
- Cable routing to the bottom, cable connection at the front
- For thermoplastic-insulated cables with cross-sections up to 300 mm² (standard)
- For cable T-plugs or cable elbow plugs
- For paper-insulated mass-impregnated cables with adapter systems
- For conventional cable sealing ends via elbow adapter AKE 20/630 (make Siemens)

Options
- Suitable for connection of surge arresters
- Mounted cable clamps
- Double cable connection with deep cable compartment cover
Transformer cable connection

Features

- Bushings with plug-in contact as interface type “A” according to EN 50 181
- For rated normal currents 200 A
- For thermoplastic-insulated cables with cross-sections up to 120 mm² (standard)
- For cable elbow plugs or straight cable plugs with plug-in contact

Selection table for cable sets

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Plug type for ring-main or circuit-breaker feeders</th>
<th>Plug type for transformer feeders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euromold</td>
<td>(K) 400 TB (S)</td>
<td>(K) 158 LR</td>
</tr>
<tr>
<td></td>
<td>(K) 400 LB</td>
<td>(K) 151 SR</td>
</tr>
<tr>
<td></td>
<td>AGT (L)10(20)</td>
<td>AGW (L) 10 (20); AGG (L) 10 (20)</td>
</tr>
<tr>
<td>nkt cables</td>
<td>AV 20</td>
<td>EASW 10/250</td>
</tr>
<tr>
<td></td>
<td>EAVI 20</td>
<td>EASW 20/250</td>
</tr>
<tr>
<td>Südkabel (ABB)</td>
<td>SEH DT 13 (23)</td>
<td>SEHDG 11.1 (21.1)</td>
</tr>
<tr>
<td></td>
<td>SEHDT 13.1 (23.1)</td>
<td>SEHDW 11.1 (21.1)</td>
</tr>
<tr>
<td>Prysmian Kabel (Pirelli)</td>
<td>FMCT sm-400</td>
<td>FMCE sm-250</td>
</tr>
<tr>
<td>Siemens</td>
<td>AKE 20/630</td>
<td>-</td>
</tr>
<tr>
<td>Tyco-Electronic/Raychem</td>
<td>RICS 51...</td>
<td>RSES; RSSS</td>
</tr>
<tr>
<td>Cooper</td>
<td>DT 400 P</td>
<td>DE 250; DS 250</td>
</tr>
<tr>
<td>Other plug types on request</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.11 Ready-for-service indicator

The switchgear is filled with insulating gas at a relative pressure. The ready-for-service indicator at the switchgear front shows through the red/green indication if the gas density is in order.
Description

Features
- Self-monitoring, easy to read
- Independent of temperature and external pressure variations
- Only responds to changes in gas density
- Option: Signalling switch for remote electrical indication
- Option (only for three-position disconnecting circuit-breaker (type LST)):
 - Signalling switch for remote electrical indication
 - Interruption of tripping circuits of protection relay

Mode of operation

For the ready-for-service indicator, a gas-tight measurement box is installed on the inside of the switchgear vessel.

A coupling magnet, which is fitted to the bottom end of the measurement box, transmits its position to an outside armature through the non-magnetizable switchgear vessel. This armature moves the ready-for-service indicator of the switchgear.

While changes in the gas density during the loss of gas, which are decisive for the insulating capacity, are displayed, changes in the gas pressure dependent on temperature and external pressure variations are not. The gas in the measurement box has the same temperature as that in the switchgear.

The temperature effect is compensated via the same pressure change in both gas volumes.

7.12 Voltage detecting systems

For voltage detection according to IEC 61243-5/VDE 0682-415 with:
- HR system (standard)
- LRM system (option)
- Integrated voltage detecting system CAPDIS-S1+/S2+ (option)
Description

- C1: Capacitive coupling electrode integrated into bushing
- C2: Capacity of the coupling section (as well as connection leads of the voltage detection system) to earth

\[U_{LE} = U_N / \sqrt{3} \] during rated operation in the three-phase system

- \[U_2 = U_A = \text{Voltage at the interface (for plug-in voltage detection system) or at the test socket (for integrated voltage detection system)} \]

Features of HR/LRM system

- With voltage indicator
 - HR system (standard) or
 - LRM system (option)
- Verification of safe isolation from supply phase by phase through insertion in each socket pair
- Voltage indicator flashes if high voltage is present
- Indicator suitable for continuous operation
- Safe-to-touch
- Measuring system and voltage indicator can be tested

Features of CAPDIS -S1+/- S2+

- Maintenance free
- Integrated repeat test of the interfaces (self-monitoring)
- Without auxiliary power
- Option: CAPDIS S2+ with remote indication of voltage state (auxiliary power required)
- With test sockets (LRM system) for phase comparison behind the cover

![Diagram of Voltage detection via capacitive voltage divider](image)
Fig. 11: CAPDIS-S2+: Cover closed
Fig. 12: CAPDIS-S2+: Cover open

1. LC display
2. Button “Display Test”
3. Cover
4. Test socket L1
5. Test socket L2
6. Test socket L3
7. Earthing socket
8. Short instruction

Display of CAPDIS-S1+/S2+

<table>
<thead>
<tr>
<th>CAPDIS-S1+</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage not present (CAPDIS-S2+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating voltage present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Operating voltage not present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Auxiliary power not present (CAPDIS-S2+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth fault or failure in phase L1, operating voltage at L2 and L3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage (not operating voltage) present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indication “Device-Function-Test” passed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indication “ERROR”, e.g. in case of missing auxiliary voltage (CAPDIS-S2+)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table showing different operating conditions and corresponding display outputs for CAPDIS-S1+ and CAPDIS-S2+.
7.13 Short-circuit/earth-fault indicators

All ring-main feeders can optionally be equipped with a 3-phase short-circuit or earth-fault indicator.

Features
- Indication at the switchgear front
- Factory-assembled including sensor mounted on ring-main cable bushing
- Short-circuit pickup values: see table
- Optical signals when a pre-selected pickup value is exceeded
- Option: remote electrical indication via passing contact (changeover contact), connected to terminals (rear side of device).

Selection of short-circuit/earth-fault indicators

Make Horstmann ¹)

![Alpha E indicator](image)

Fig. 13: Alpha E indicator

<table>
<thead>
<tr>
<th>Indicator type</th>
<th>Reset</th>
<th>Short-circuit current¹[A]</th>
<th>Earth-fault current²[A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA M</td>
<td>manually</td>
<td>400, 600, 800, 1000</td>
<td>–</td>
</tr>
<tr>
<td>ALPHA E</td>
<td>manually/automatically after 2 or 4 h</td>
<td>400, 600, 800, 1000</td>
<td>–</td>
</tr>
<tr>
<td>GAMMA 4.0³)</td>
<td>manually/after return of power supply/after 2 or 4 h</td>
<td>400, 600, 800, 1000</td>
<td>–</td>
</tr>
<tr>
<td>ALPHA automatic</td>
<td>manually (by pushbutton), remote reset (by auxiliary voltage), automatically after 3 h</td>
<td>Change of current (I_{di}= 150 \text{ A} - 300 \text{ A}) (depending on the load current) at (t=20 \text{ ms})</td>
<td>–</td>
</tr>
</tbody>
</table>

Earth-fault/short-circuit indicator

<table>
<thead>
<tr>
<th>Indicator type</th>
<th>Reset</th>
<th>Short-circuit current¹[A]</th>
<th>Earth-fault current²[A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKA - 3³)</td>
<td>after return of power supply</td>
<td>450</td>
<td>40, 80, 160</td>
</tr>
<tr>
<td>DELTA M</td>
<td>manually</td>
<td>400, 600, 800, 1000</td>
<td>200</td>
</tr>
<tr>
<td>DELTA E</td>
<td>manually, automatically after 2 or 4 h</td>
<td>400, 600, 800, 1000</td>
<td>200</td>
</tr>
</tbody>
</table>

Earth-fault indicator

<table>
<thead>
<tr>
<th>Indicator type</th>
<th>Reset</th>
<th>Short-circuit current¹[A]</th>
<th>Earth-fault current²[A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKA - 31³)</td>
<td>after return of power supply</td>
<td>–</td>
<td>40, 80, 160</td>
</tr>
</tbody>
</table>

¹) Further types and other makes available on request.
²) Standard values. Other values on request.
³) External auxiliary voltage AC 240 V required.
7.14 Accessories

Standard accessories
- Operating and installation instructions
- Operating lever for the three-position switch-disconnector/disconnecting circuit-breaker
- Hand crank for circuit-breaker 3AH
- Double-bit key (option)

Other accessories According to order documents/purchase order (selection):
- HV HRC fuse-links
- Cable plugs / adapter systems
- Surge arresters
- Test fuses for mechanical simulation of the striker of HV HRC fuse-links in transformer feeders

Fig. 14: Test fuse with extension tube

- HR/LRM voltage indicators
- Test units to check the capacitive interface and the voltage indicators (e.g. make Horstmann).

- Phase comparison test units (e.g. make Pfisterer, type EPV)
8 Technical data

8.1 Complete switchgear

General technical data

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard panels</th>
<th>Panels type LST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>up to 12 kV</td>
<td>> 12 kV</td>
</tr>
<tr>
<td>Rated functional level p_{re} for insulation</td>
<td>1500 hPa</td>
<td>1750 hPa</td>
</tr>
<tr>
<td>(absolute) at 20 °C</td>
<td>1950 hPa</td>
<td></td>
</tr>
<tr>
<td>Minimum functional level (absolute) at 20 °C</td>
<td>1300 hPa</td>
<td>1550 hPa</td>
</tr>
<tr>
<td>Ambient air temperature T °C</td>
<td>Panels without secondary equipment</td>
<td>Class “Minus 25 Indoor” (-40 °C to +70 °C 1)</td>
</tr>
<tr>
<td></td>
<td>Panels with secondary equipment, circuit-breaker panels</td>
<td>Class “Minus 5 Indoor” (-5 °C to +55 °C 1)</td>
</tr>
<tr>
<td>Partition class</td>
<td>Class PM (partitions metallic)</td>
<td></td>
</tr>
<tr>
<td>Loss of service continuity</td>
<td>LSC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSC 2</td>
<td></td>
</tr>
</tbody>
</table>

1) Temperature range, reduced normal currents at > +40 °C

Electrical data

The technical data of the switchgear supplied is shown on the rating plate.

<table>
<thead>
<tr>
<th>Rated voltage</th>
<th>U_r kV</th>
<th>7.2</th>
<th>12</th>
<th>15</th>
<th>17.5</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated insulation level</td>
<td>U_{d} kV</td>
<td>20</td>
<td>28/42*</td>
<td>36</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage</td>
<td>U_{p} kV</td>
<td>60</td>
<td>75/95*</td>
<td>95</td>
<td>95</td>
<td>125</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>f_r Hz</td>
<td>50/60</td>
<td>50/60</td>
<td>50/60</td>
<td>50/60</td>
<td>50/60</td>
</tr>
<tr>
<td>Rated normal current</td>
<td>I_r A</td>
<td>250/400/630</td>
<td>250/400/630</td>
<td>250/400/630</td>
<td>250/400/630</td>
<td>250/400/630</td>
</tr>
<tr>
<td>Transformer feeders</td>
<td>I_r ** A</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Rated short-time withstand current for switchgear with i_b =15</td>
<td>I_b up to kA</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>for switchgear with i_b =3s</td>
<td>I_b up to kA</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Rated peak withstand current</td>
<td>I_p up to kA</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>50</td>
</tr>
<tr>
<td>Rated short-circuit breaking current Circuit-breaker 3AH</td>
<td>I_{ma} up to kA</td>
<td>50/63</td>
<td>50/63</td>
<td>50/63</td>
<td>50/63</td>
<td>50</td>
</tr>
<tr>
<td>Circuit-breaker LST</td>
<td>I_{ma} up to kA</td>
<td>20/25</td>
<td>20/25</td>
<td>20/25</td>
<td>20/25</td>
<td>20</td>
</tr>
<tr>
<td>Electrical service life</td>
<td>Circuit-breaker 3AH at rated normal current</td>
<td>10 000 operating cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit-breaker LST at rated normal current</td>
<td>2000 operating cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| * Insulation level 42 kV/95 kV according to national requirements, for I_b = 20 kA |
| ** Depending on fuse type used |
| *** Maximum let-through current of fuse |

Dimensions and weights

For binding switchgear dimensions, please refer to the order documentation (dimension drawing, front view).
<table>
<thead>
<tr>
<th>Individual panel, panel block or combinations thereof for standard switchgear (without pressure absorber system)</th>
<th>Type</th>
<th>Panel or panel combination</th>
<th>Transport unit for standard panels (without pressure absorber system)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Width B1 [mm]</td>
<td>Width B2 [m]</td>
</tr>
<tr>
<td>Transport of individual panels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring-main panel (standard)</td>
<td>RK</td>
<td>350</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>RK1</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td>Cable panel (standard)</td>
<td>K</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td>Transformer panel</td>
<td>TR</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td>Circuit-breaker panel (standard)</td>
<td>LS1</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>LS2</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>LST1</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td>Bus sectionalizer panel</td>
<td>LT1</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>LT1-V</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>LT2</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td>Busbar earthing panel</td>
<td>SE1</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>SE2</td>
<td>500</td>
<td>0.70</td>
</tr>
<tr>
<td>Billing metering panels, air-insulated low structure with combined transformers</td>
<td>ME3</td>
<td>850</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>ME2</td>
<td>600</td>
<td>1.08</td>
</tr>
<tr>
<td>Transport of panel blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring-main panel block</td>
<td>R-B2</td>
<td>700</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>R-B3</td>
<td>1050</td>
<td>1.40</td>
</tr>
<tr>
<td>Ring-main/circuit-breaker panel block</td>
<td>R LST-B2</td>
<td>700</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>2R LST-B3</td>
<td>1050</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>3R LST-B4</td>
<td>1400</td>
<td>2.03</td>
</tr>
<tr>
<td>Transformer panel block</td>
<td>T-B2</td>
<td>1000</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>T-B3</td>
<td>1500</td>
<td>2.03</td>
</tr>
<tr>
<td>Ring-main/transformer panel block</td>
<td>R T-B2</td>
<td>700</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>2R T-B3</td>
<td>1050</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>3R T-B4</td>
<td>1400</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td>T 2R T-B4 2)</td>
<td>1400</td>
<td>2.03</td>
</tr>
<tr>
<td>Cable connection/transformer panel block</td>
<td>K T-B2</td>
<td>700</td>
<td>1.08</td>
</tr>
<tr>
<td>Cable connection/circuit-breaker panel block</td>
<td>K LST-B2</td>
<td>700</td>
<td>1.08</td>
</tr>
</tbody>
</table>

1) The net weight depends on the extent to which it is equipped (e.g. current transformers, motor operating mechanisms, deep cable compartment cover) and is therefore given as a mean value.

2) On request

* Low-voltage compartment, 600 mm high, weight approx. 60 kg depending on the panel type and the extent to which it is equipped
Description

Dielectric strength
- The dielectric strength is verified by testing the switchgear with rated values of short-duration power-frequency withstand voltage and lightning impulse withstand voltage according to IEC 62271-1 / VDE 0670-1.
- The rated values are referred to sea level and to normal atmospheric conditions (1013 hPa, 20 °C, 11g/m³ humidity according to IEC 60071 and VDE 0111).
- The dielectric strength decreases with increasing altitude. For site altitudes above 1000 m (above sea level) the standards do not provide any guidelines for the insulation rating, but leave this to the scope of special agreements.

Transport units for shipping (top view)

Transport of combinations of different individual panels or panel blocks

<table>
<thead>
<tr>
<th>Without pressure absorber system</th>
<th>Overall width B3 [mm]</th>
<th>Width B2 [m]</th>
<th>Height without / with LVC [m]</th>
<th>Depth T2 [m]</th>
<th>Volume without / with LVC [m³]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprising</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- a number of individual panels</td>
<td>≤ 850</td>
<td>1.08</td>
<td>1.60/2.20</td>
<td>1.10</td>
<td>1.90/2.61</td>
<td>1) + 60***</td>
</tr>
<tr>
<td>or</td>
<td>≤ 1200</td>
<td>1.40</td>
<td>1.60/2.20</td>
<td>1.10</td>
<td>2.46/3.39</td>
<td>1) + 70***</td>
</tr>
<tr>
<td>- 1 panel block or</td>
<td>≤ 1800</td>
<td>2.03</td>
<td>1.60/2.20</td>
<td>1.10</td>
<td>3.57/4.91</td>
<td>1) + 85***</td>
</tr>
<tr>
<td>- a number of panel blocks or</td>
<td>≤ 2500</td>
<td>2.53</td>
<td>1.60/2.20</td>
<td>1.10</td>
<td>4.49/6.17</td>
<td>1) + 100***</td>
</tr>
</tbody>
</table>

With pressure absorber system for wall-standing arrangement

<table>
<thead>
<tr>
<th>Comprising</th>
<th>Overall width B3 [mm]</th>
<th>Width B2 [m]</th>
<th>Height without / with LVC [m]</th>
<th>Depth T2 [m]</th>
<th>Volume without / with LVC [m³]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>- a number of individual panels</td>
<td>≤ 850</td>
<td>1.08</td>
<td>2.10/2.50</td>
<td>1.10</td>
<td>2.49/2.97</td>
<td>1) + 140** + 60***</td>
</tr>
<tr>
<td>or</td>
<td>≤ 1200</td>
<td>1.40</td>
<td>2.10/2.50</td>
<td>1.10</td>
<td>3.23/3.85</td>
<td>1) + 150** + 70***</td>
</tr>
<tr>
<td>- 1 panel block or</td>
<td>≤ 1800</td>
<td>2.03</td>
<td>2.10/2.50</td>
<td>1.10</td>
<td>4.69/5.58</td>
<td>1) + 340** + 85***</td>
</tr>
<tr>
<td>- a number of panel blocks or</td>
<td>≤ 2000</td>
<td>2.53</td>
<td>2.10/2.50</td>
<td>1.10</td>
<td>5.84/6.96</td>
<td>1) + 370** + 100***</td>
</tr>
</tbody>
</table>

With pressure absorber system for free-standing arrangement

<table>
<thead>
<tr>
<th>Comprising</th>
<th>Overall width B3 [mm]</th>
<th>Width B2 [m]</th>
<th>Height without / with LVC [m]</th>
<th>Depth T2 [m]</th>
<th>Volume without / with LVC [m³]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>- a number of individual panels</td>
<td>≤ 850</td>
<td>1.08</td>
<td>2.50/2.50</td>
<td>1.10</td>
<td>2.97/2.97</td>
<td>1) + 180** + 60***</td>
</tr>
<tr>
<td>or</td>
<td>≤ 1200</td>
<td>1.40</td>
<td>2.50/2.50</td>
<td>1.10</td>
<td>3.85/3.85</td>
<td>1) + 205** + 70***</td>
</tr>
<tr>
<td>- 1 panel block or</td>
<td>≤ 1800</td>
<td>2.03</td>
<td>2.50/2.50</td>
<td>1.10</td>
<td>5.58/5.58</td>
<td>1) + 380** + 85***</td>
</tr>
<tr>
<td>- a number of panel blocks or</td>
<td>≤ 2000</td>
<td>2.53</td>
<td>2.50/2.50</td>
<td>1.10</td>
<td>6.96/6.96</td>
<td>1) + 420** + 100***</td>
</tr>
</tbody>
</table>

1) Sum of the net weights of individual panels and/or panel blocks

* If there is an ME1 available in connection with pressure absorber system for wall-standing arrangement, the same heights as with low-voltage compartment apply

** Additional weight of pressure absorber system

*** Packing weight

Fig. 15: Transport units for shipping (top view)
All parts housed inside the switchgear vessel which are subjected to high voltage are SF₆-insulated against the earthed enclosure. This insulation permits switchgear installation at any desired altitude (above sea level), without the dielectric strength being adversely affected. This also applies to the cable connection when using cable T-plugs or cable elbow plugs (screened version) and to the busbar for 8DH switchgear (screened version).

Dielectric strength for switchgear with HV HRC fuses

- When HV HRC fuses are used, the conductors are led out of the gas insulation through the bushing. For these connections in air, the rated values (rated lightning impulse withstand voltage, rated short-duration power-frequency withstand voltage) of the dielectric strength are referred to normal atmospheric conditions (1013 hPa, 20 °C, 11 g/m³ humidity), hence to sea level, in accordance with IEC 60071 / VDE 0111.

Site altitude

For site altitudes above 1000 m, the correction factor K_a is recommended, independently of the site altitude above sea level.

<table>
<thead>
<tr>
<th>Rated voltage (r.m.s. value) [kV]</th>
<th>7.2</th>
<th>12</th>
<th>15</th>
<th>17.5</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration power-frequency withstand voltage (r.m.s. value) [kV]</td>
<td>23</td>
<td>32</td>
<td>39</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>- Across isolating distances</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>- Between phases and to earth</td>
<td>60</td>
<td>75</td>
<td>95</td>
<td>95</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rated lightning impulse withstand voltage (peak value) [kV]</th>
<th>70</th>
<th>85</th>
<th>105</th>
<th>110</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Across isolating distances</td>
<td>60</td>
<td>75</td>
<td>95</td>
<td>95</td>
<td>125</td>
</tr>
<tr>
<td>- Between phases and to earth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 16: Correction factor K_a as a function of the site altitude in m above sea level
<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration power-frequency withstand voltage to be selected for site altitudes > 1000 m</td>
</tr>
<tr>
<td>≥ Rated short-duration power-frequency withstand voltage up to ≤ 1000 m * K_a</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage to be selected for site altitudes > 1000 m</td>
</tr>
<tr>
<td>≥ Rated lightning impulse withstand voltage up to ≤ 1000 m * K_a</td>
</tr>
<tr>
<td>Example</td>
</tr>
<tr>
<td>3000 m site altitude above sea level</td>
</tr>
<tr>
<td>17.5 kV switchgear rated voltage</td>
</tr>
<tr>
<td>95.0 kV rated lightning impulse withstand voltage</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage to be selected</td>
</tr>
<tr>
<td>95 kV * 1.28 = 122 kV</td>
</tr>
<tr>
<td>Result</td>
</tr>
<tr>
<td>According to the above table, a switchgear for a rated voltage of 24 kV with a rated lightning impulse withstand voltage of 125 kV is to be selected.</td>
</tr>
</tbody>
</table>
8.2 Standards, specifications, guidelines

Standards

The switchgear for indoor installation complies with the following prescriptions and standards:

<table>
<thead>
<tr>
<th>Category</th>
<th>IEC/EN standard</th>
<th>VDE standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchgear</td>
<td>62 271-1</td>
<td>0670-1</td>
</tr>
<tr>
<td></td>
<td>62 271-200</td>
<td>0671-200</td>
</tr>
<tr>
<td>Switching devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit-breakers</td>
<td>62 271-100</td>
<td>0671-100</td>
</tr>
<tr>
<td>Disconnectors/earthing switches</td>
<td>62 271-102</td>
<td>0671-102</td>
</tr>
<tr>
<td>Switch-disconnectors</td>
<td>60 265-1</td>
<td>0670-301</td>
</tr>
<tr>
<td>Switch-disconnector/fuse combination</td>
<td>62 271-105</td>
<td>0671-105</td>
</tr>
<tr>
<td>Voltage detecting systems</td>
<td>61 243-5</td>
<td>0682-415</td>
</tr>
<tr>
<td>Surge arresters</td>
<td>60 099</td>
<td>0675</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>60 529</td>
<td>470-1</td>
</tr>
<tr>
<td>Instrument transformers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current transformers</td>
<td>60 044-1</td>
<td>0414-1</td>
</tr>
<tr>
<td>Voltage transformers</td>
<td>60 044-2</td>
<td>0414-2</td>
</tr>
<tr>
<td>Combined transformers</td>
<td>60 044-3</td>
<td>0414-3</td>
</tr>
<tr>
<td>SF₆</td>
<td>60 376</td>
<td>0373-1</td>
</tr>
<tr>
<td></td>
<td>60 480</td>
<td>0373-2</td>
</tr>
<tr>
<td>Installation and earthing</td>
<td>61 936-1 / HD 637 -S1</td>
<td>0101</td>
</tr>
<tr>
<td>Environmental conditions</td>
<td>60 721-3-3</td>
<td>DIN EN 60 721-3-3</td>
</tr>
</tbody>
</table>

Electromagnetic compatibility - EMC

The a.m. standards as well as the “EMC Guideline for Switchgear”* are applied during design, manufacture and erection of the switchgear. Installation, connection and maintenance have to be performed in accordance with the stipulations of the operating instructions. For operation, the legal stipulations applicable at the place of installation have to be observed additionally. In this way, the switchgear assemblies of this type series fulfill the basic protection requirements of the EMC guideline.

The switchgear operator / owner must keep the technical documents supplied with the switchgear throughout the entire service life, and keep them up-to-date in case of modifications of the switchgear.

* (Dr. Bernd Jäkel, Ansgar Müller; Medium-Voltage Systems - EMC Guideline for Switchgear; A&D ATS SR/PTD M SP)

Protection against solid foreign objects, electric shock and water

The medium-voltage switchgear fulfills the following degrees of protection according to IEC 62271-1, IEC 62271-200 and IEC 60529:
Transport regulations

According to “Annex 1 of the European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR) dated September 30th, 1957” Siemens gas insulated medium-voltage switchgear does not belong to the category of dangerous goods regarding transportation, and is exempted from special transport regulations according to ADR, Clause 1.1.3.1 b).

<table>
<thead>
<tr>
<th>Degree of protection</th>
<th>Type of protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP 2X (standard)</td>
<td>Parts under high voltage in switchgear with HV HRC fuses</td>
</tr>
<tr>
<td>IP3X (option)</td>
<td>Enclosure of parts under high voltage in switchgear with locking device</td>
</tr>
<tr>
<td>IP3XD (on request)</td>
<td>Parts under high voltage in switchgear with locking device</td>
</tr>
<tr>
<td>IP65</td>
<td>Parts under high voltage in switchgear without HV HRC fuses</td>
</tr>
</tbody>
</table>
8.3 3AH vacuum circuit-breaker

Fig. 17: Permissible number of operating cycles \([n] \) as a function of the breaking current (r.m.s. value) \([I_a] \)

<table>
<thead>
<tr>
<th>Permissible number of operating cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>At rated normal current 10 000 times mechanically without maintenance</td>
</tr>
<tr>
<td>At short-circuit breaking current</td>
</tr>
<tr>
<td>12 kV/20 kA 50</td>
</tr>
<tr>
<td>24 kV/20 kA 100</td>
</tr>
<tr>
<td>17.5 kV/25 kA 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classes for switching device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function () Class () Standard</td>
</tr>
<tr>
<td>BREAKING () M2 () IEC 62271-100</td>
</tr>
<tr>
<td>E2 () IEC 62271-100</td>
</tr>
<tr>
<td>C2 () IEC 62271-100</td>
</tr>
</tbody>
</table>

Property
- 10 000 times mechanically without maintenance
- 10 000 times rated normal current without maintenance
- Very low probability of restrikes
Switching times

<table>
<thead>
<tr>
<th>Component</th>
<th>Duration</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing time</td>
<td>75</td>
<td>ms</td>
</tr>
<tr>
<td>Charging time</td>
<td><15</td>
<td>s</td>
</tr>
<tr>
<td>Opening time (Y1)</td>
<td><65</td>
<td>ms</td>
</tr>
<tr>
<td>Additional release 3AX 11 (Y2), (Y4), (Y7)</td>
<td><50</td>
<td>ms</td>
</tr>
<tr>
<td>Arcing time (Y1)</td>
<td><15</td>
<td>ms</td>
</tr>
<tr>
<td>Breaking time (Y1)</td>
<td><80</td>
<td>ms</td>
</tr>
<tr>
<td>Additional release 3AX 11 (Y2), (Y4), (Y7)</td>
<td><65</td>
<td>ms</td>
</tr>
<tr>
<td>Dead time</td>
<td>300</td>
<td>ms</td>
</tr>
<tr>
<td>Closing solenoid (Y9)</td>
<td>45</td>
<td>ms</td>
</tr>
<tr>
<td>Shunt release (Y1)</td>
<td>40</td>
<td>ms</td>
</tr>
<tr>
<td>Additional release 3AX 11 (Y2), (Y4), (Y7)</td>
<td><50</td>
<td>ms</td>
</tr>
<tr>
<td>Dead time</td>
<td>300</td>
<td>ms</td>
</tr>
<tr>
<td>Short-time impulse duration of the circuit-breaker tripping signal</td>
<td>10</td>
<td>ms</td>
</tr>
</tbody>
</table>

Closing time: The interval of time between the initiation (command) of the closing operation and the instant when the contacts touch in all poles.

Opening time: The interval of time between the initiation (command) of the opening operation and the instant when the contacts separate in all poles.

Arcing time: The interval of time from the first initiation of an arc and the instant of final arc extinction in all poles.

Breaking time: The interval of time between the initiation (command) of the opening operation and the instant of final arc extinction in the last quenching pole (= opening time and arcing time).

Close-open contact time: The interval of time - in a make-break operating cycle - between the instant when the contacts touch in the first pole in the closing process, and the instant when the contacts separate in the subsequent opening process.

Motor operating mechanism: The operating mechanisms of the 3AH circuit-breakers are suitable for auto-reclosure. For DC operation, the maximum power consumption is approx. 350 W. For AC operation, the maximum power consumption is approx. 400 VA.

Rated switching sequences:
- Rapid load transfer (U): O-t-CO-t’-CO (t, t’ = 3 min)
- Auto-reclosure (K): O-t-CO-t’-CO (t= 0,3 s, t’ = 3 min)
- Multiple auto-reclosure: O-t-CO-t’-CO-t”-CO-t”-CO (t= 0,3 s, t’ = 15 s)

The rated current of the motor protection equipment is shown in the following table:
The supply voltage may deviate from the rated supply voltage specified in the table by –15% to +10%.

The breaking capacity of the auxiliary switch 3SV92 is shown on the following table:

<table>
<thead>
<tr>
<th>Breaking capacity</th>
<th>Operating voltage [V]</th>
<th>Normal current [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 40 up to 60 Hz</td>
<td>up to 230</td>
<td>10</td>
</tr>
<tr>
<td>DC</td>
<td>24</td>
<td>Resistive load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>DC 220/AC 230</td>
<td>1.6</td>
</tr>
</tbody>
</table>

*) M.c.b. assembly with C-characteristic

Undervoltage release
Undervoltage releases are tripped automatically through an electromagnet or deliberately. The deliberate tripping of the undervoltage release generally takes place via a NC contact in the tripping circuit or via a NO contact by short-circuiting the magnet coil. With this type of tripping, the short-circuit current is limited by the built-in resistors. Power consumption: 20 W or 20 VA.

Closing solenoid (Y9)
The closing solenoid 3AY1510 closes the circuit-breaker. After completion of a closing operation, the closing solenoid is de-energised internally. It is available for DC or AC voltage. Power consumption: 140 W or 140 VA.

Shunt releases
Shunt releases are used for automatic and deliberate tripping of circuit-breakers. They are designed for connection to external voltage (DC or AC voltage). In special cases, for deliberate tripping, they can also be connected to a voltage transformer.

Shunt releases based on two different principles are used:

- **The shunt release (Y1) 3AY1510** is used as standard in the basic circuit-breaker version. With this design, the circuit-breaker is opened electrically. Power consumption: 140 W or 140 VA.

- **The shunt release (Y2) 3AX1101** with energy store is fitted if more than one shunt release is required. With this design, the electrical opening command is transferred magnetically and thus, the circuit-breaker is opened. Power consumption: 70 W or 50 VA.

Circuit-breaker tripping signal
When the circuit-breaker is tripped by a release (e.g. by protection tripping) there is a signal through the NO contact -S6. If the circuit-breaker is tripped deliberately with the mechanical pushbutton, this signal is suppressed by the NC contact -S7.
C.t.-operated releases (Y6)

The following c.t.-operated releases are available:

- The c.t.-operated release 3AX1102 consists of an energy store, a latching mechanism and an electromagnetic system. Rated tripping current: 0.5 A/1 A
- The c.t.-operated release 3AX1104 (low-energy release) is suitable for a tripping pulse of ≤ 0.1 Ws in connection with adequate protection systems. It is used if auxiliary voltage is missing, tripping via protection relay.

Varistor module

<table>
<thead>
<tr>
<th>ATTENTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching overvoltages can damage electronic control devices.</td>
</tr>
<tr>
<td>⇒ Do not switch off inductive consumers in DC circuits.</td>
</tr>
</tbody>
</table>

With the varistor module 3AX1526, the inductances of the circuit-breaker operating mechanism and the circuit-breaker control system (motor, closing solenoid, shunt release and auxiliary contactor) can be operated with DC. The module limits the overvoltage to approx. 500 V and is available for rated operating voltages from 60 V (DC) up to 220 V (DC). It contains two separate varistor circuits.

Type approval according to German X-ray regulations (RöV)

The vacuum interrupters fitted in the vacuum circuit-breakers 3AH are type-approved in accordance with the X-ray regulations of the Federal Republic of Germany. They conform to the requirements of the X-ray regulations from July 25th 1996, Federal Law Gazette (BGBI) I Page 1172, §8 and Annex III, Section 5 up to rated short-duration power-frequency voltage stipulated in accordance with IEC/DIN VDE.
Switching capacity for general-purpose switches (class E3) according to IEC 60265-1

<table>
<thead>
<tr>
<th>Test duty</th>
<th>Description</th>
<th>Rating</th>
<th>7.2</th>
<th>12</th>
<th>15</th>
<th>17.5</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duty 1</td>
<td>Rated mainly active load breaking current</td>
<td>100 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rated mainly active load breaking current</td>
<td>20 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Test duty 2a</td>
<td>Rated closed-loop breaking current</td>
<td>20 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Test duty 3</td>
<td>Rated transformer breaking current</td>
<td>20 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Test duty 4a</td>
<td>Rated cable-charging breaking current</td>
<td>10 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rated cable-charging breaking current</td>
<td>10 operations</td>
<td>(0.2...0.4)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Test duty 4b</td>
<td>Rated line-charging breaking current</td>
<td>10 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Test duty 5</td>
<td>Rated short-circuit making current</td>
<td>5 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Test duty 6a</td>
<td>Rated earth-fault breaking current</td>
<td>10 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Test duty 6b</td>
<td>Rated cable-charging breaking current and line-charging breaking current under earth-fault conditions</td>
<td>10 operations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>–</td>
<td>Cable-charging breaking current under earth-fault conditions with superimposed load current</td>
<td>10 operations</td>
<td>1+I6b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Switching capacity according to IEC 62271-105

- **Rated transfer current** $I_{transfer}$ A 1150 1150 830 830 830
- **Rated take-over current** I_{tO} A 1150 1150 830 830 830

Make-proof earthing switch according to IEC 62271-102

- **Rated short-circuit making current** I_{ema} up to kA 63 63 63 63 50

Operating voltages for motor operating mechanisms:

- **Auxiliary and control voltages U_d:**
 - DC 24, 48, 60, 110, 220 V
 - AC 50/60 Hz, 110 and 230 V

Endurance classes and number of operating cycles

<table>
<thead>
<tr>
<th>Function</th>
<th>Class</th>
<th>Standard</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCONNECTING</td>
<td>M0</td>
<td>IEC 62271-102</td>
<td>1000 times mechanically without maintenance</td>
</tr>
<tr>
<td>LOAD BREAKING</td>
<td>M1</td>
<td>IEC 60265-1</td>
<td>1000 times mechanically without maintenance</td>
</tr>
</tbody>
</table>
| E3 | IEC 60265-1 | 100 times rated mainly active load breaking current I_1
| | | | 1) without maintenance 5 times rated short-circuit making current I_{ema} with superimposed load current |
| EARTHING | E2 | IEC 62271-102 | 5 times rated short-circuit making current I_{ema} without maintenance |

1) In addition to I_1, class E3 covers the test currents I_{2a}, I_{4a}, I_{4b}, I_{6a} and I_{6b}.
Electrical data

Rated voltage

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>7.2</th>
<th>12</th>
<th>15</th>
<th>17.5</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short-duration power-frequency withstand voltage

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>20</th>
<th>28</th>
<th>36</th>
<th>38</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lightning impulse withstand voltage

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>20</th>
<th>28</th>
<th>36</th>
<th>38</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normal current

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>250/630</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_r</td>
<td></td>
</tr>
</tbody>
</table>

Short-time withstand current

- **at t_k=1 s**
 - I_k up to kA
 - 16
 - 20
 - 16
 - 20
 - 16
 - 20
 - 16
 - 20
 - 16
 - 20
 - 16
 - 20

- **at t_k=3 s**
 - I_k up to kA
 - -
 - -
 - -
 - -
 - -
 - -
 - -
 - -
 - -
 - -
 - -
 - -

Peak withstand current

<table>
<thead>
<tr>
<th>Current (kA)</th>
<th>40</th>
<th>50</th>
<th>40</th>
<th>50</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short-circuit making current

<table>
<thead>
<tr>
<th>Current (kA)</th>
<th>40</th>
<th>50</th>
<th>40</th>
<th>50</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short-circuit breaking current

<table>
<thead>
<tr>
<th>Current (kA)</th>
<th>16</th>
<th>20</th>
<th>16</th>
<th>20</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cable-charging breaking current

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C</td>
<td></td>
</tr>
</tbody>
</table>

Endurance classes and number of operating cycles

<table>
<thead>
<tr>
<th>Number of electrical operating cycles “n” for circuit-breaker at:</th>
<th>Rated voltage U_r (kV)</th>
<th>7.2</th>
<th>12</th>
<th>15</th>
<th>17.5</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-circuit making current I_m (kA)</td>
<td>n</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Rated short-circuit breaking current I_SC (kA)</td>
<td>n</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Option</td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Class</td>
<td></td>
<td>E2 (IEC 62271-100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Number of mechanical operating cycles “n” for circuit-breaker | n | 2000| | | | |
|Class | | M1 (IEC 62271-100) | | | | | |

| Number of mechanical operating cycles “n” for disconnector function | n | 2000| | | | |
|Class | | M1 (IEC 62271-102) | | | | | |

| Number of electrical operating cycles “n” for earthing switch at rated short-circuit making current I_m (kA) | n | 5 | |
| | Class | E2 (IEC 62271-102) |

| Number of mechanical operating cycles “n” for make-proof earthing switch | n | 1000 |
|Class | M0 (IEC 62271-102) |

Classification “C” for circuit-breaker: Low probability of restrikes for capacitive currents

| Class | C1 (IEC 62271-100) |

Rated operating sequence

Rated operating sequence according to IEC 62271-100 (T 100 s):

\[O - t - \text{CO} - t' - \text{CO}, t=t'=3 \text{ min} \]

Operating times

<table>
<thead>
<tr>
<th>Component</th>
<th>Duration</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing time (Spring-operated/stored energy mechanism (manual operation))</td>
<td>< 2</td>
<td>s</td>
</tr>
<tr>
<td>Charging time (Spring-operated/stored energy mechanism (manual operation))</td>
<td>< 2</td>
<td>s</td>
</tr>
<tr>
<td>Opening time (Low-energy release (Y6))</td>
<td>< 50</td>
<td>ms</td>
</tr>
<tr>
<td>Arcing time (Shunt release (Y3))</td>
<td>< 20</td>
<td>ms</td>
</tr>
<tr>
<td>Breaking time (Low-energy release (Y6))</td>
<td>< 70</td>
<td>ms</td>
</tr>
<tr>
<td>Dead time (Shunt release (Y3))</td>
<td>< 50</td>
<td>ms</td>
</tr>
<tr>
<td>Close-open contact time (Low-energy release (Y6))</td>
<td>< 230*</td>
<td>ms</td>
</tr>
<tr>
<td>Minimum command duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSE (Spring-operated/stored energy mechanism (manual operation))</td>
<td>< 2</td>
<td>s</td>
</tr>
<tr>
<td>OPEN (Low-energy release (Y6))</td>
<td>7SJ45 100</td>
<td>ms</td>
</tr>
<tr>
<td>OPEN (Shunt release (Y3))</td>
<td>7SJ46 500</td>
<td>ms</td>
</tr>
</tbody>
</table>

* Tested via test input of WIC relay

8.6 Selection of HV HRC fuse links

Allocation of HV HRC fuses and transformers

The three-position switch-disconnector in the transformer feeder (transformer switch) was combined with HV HRC fuse-links and tested in accordance with IEC 62271-105.

The transformer protection table below shows HV HRC fuse-links recommended for transformer protection. Furthermore, the switchgear also permits fuse protection of transformers up to ratings of 2000 kVA. Please contact us for such applications.

The **protection table** applies to:

- Maximum ambient air temperature in the switchgear room of 40°C according to IEC 62 271-1 considering the influence of the switchgear enclosure
- Requirements according to IEC 62271-105
- Protection of distribution transformers according to IEC 60787
- Rated power of transformer (no overload operation)

The specified HV HRC fuses make SIBA are type-tested partial range fuses according to IEC 60 282-1. The dimensions correspond to DIN 43625. The HV HRC fuses have a thermal protection in form of a temperature-limiting striker tripping operating in case of defective HV HRC fuse-links or high overload currents.

Please contact us if you want to use HV HRC fuses from other manufacturers.

Basis for selection of HV HRC fuse-links:
- IEC 60282-1
- IEC 62271-105
• IEC 60787
• Recommendations and data sheets of fuse manufacturers
• Permissible power loss in the switchgear enclosure at an ambient air temperature of 40° C
Transformer Protection Table: Recommendation for Allocation of HV HRC Fuse-links for SIBA Transformers

<table>
<thead>
<tr>
<th>Transformer</th>
<th>HV HRC fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6 - 7,2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

Transformer Protection Table: Recommendation for Allocation of HV HRC Fuse-links for SIBA Transformers

<table>
<thead>
<tr>
<th>Transformer</th>
<th>HV HRC fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6 - 7,2</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 - 12</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>
Transformer and HV HRC fuse specifications

<table>
<thead>
<tr>
<th>Transformer</th>
<th>HV HRC fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>U [kV]</td>
<td>Sₙ [kVA]</td>
</tr>
<tr>
<td>10 - 12</td>
<td>250</td>
</tr>
<tr>
<td>25</td>
<td>6 - 12</td>
</tr>
<tr>
<td>25</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>25</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>25</td>
<td>10 - 24</td>
</tr>
<tr>
<td>31,5</td>
<td>6 - 12</td>
</tr>
<tr>
<td>31,5</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>31,5</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>31,5</td>
<td>10 - 24</td>
</tr>
<tr>
<td>40</td>
<td>6 - 12</td>
</tr>
<tr>
<td>40</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>40</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>40</td>
<td>10 - 24</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>6 - 12</td>
</tr>
<tr>
<td>40</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>40</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>40</td>
<td>10 - 24</td>
</tr>
<tr>
<td>630</td>
<td>4</td>
</tr>
<tr>
<td>63</td>
<td>6 - 12</td>
</tr>
<tr>
<td>80</td>
<td>10 - 24</td>
</tr>
<tr>
<td>80</td>
<td>6 - 12</td>
</tr>
<tr>
<td>80</td>
<td>6 - 12</td>
</tr>
<tr>
<td>800</td>
<td>5 - 6</td>
</tr>
<tr>
<td>80</td>
<td>6 - 12</td>
</tr>
<tr>
<td>80</td>
<td>6 - 12</td>
</tr>
<tr>
<td>1000</td>
<td>5 - 6</td>
</tr>
<tr>
<td>100</td>
<td>6 - 12</td>
</tr>
</tbody>
</table>

Transformer and HV HRC fuse specifications

<table>
<thead>
<tr>
<th>Transformer</th>
<th>HV HRC fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>U [kV]</td>
<td>Sₙ [kVA]</td>
</tr>
<tr>
<td>13,8</td>
<td>50</td>
</tr>
<tr>
<td>6,3</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>6,3</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>10 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td>10 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>160</td>
<td>4</td>
</tr>
<tr>
<td>16 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>16 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>250</td>
<td>4</td>
</tr>
<tr>
<td>20 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>315</td>
<td>4</td>
</tr>
<tr>
<td>25 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>31,5 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>40 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>630</td>
<td>4</td>
</tr>
<tr>
<td>50 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>800</td>
<td>5 - 6</td>
</tr>
<tr>
<td>63 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>1000</td>
<td>5 - 6</td>
</tr>
<tr>
<td>80 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>15 - 17,5</td>
<td>50</td>
</tr>
<tr>
<td>6,3</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>6,3</td>
<td>10 - 17,5</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>10 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td>16 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>160</td>
<td>4</td>
</tr>
<tr>
<td>16 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>20 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>250</td>
<td>4</td>
</tr>
<tr>
<td>25 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>315</td>
<td>4</td>
</tr>
<tr>
<td>31,5 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>31,5 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>31,5 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>630</td>
<td>4</td>
</tr>
<tr>
<td>40 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>800</td>
<td>5 - 6</td>
</tr>
<tr>
<td>63 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>1000</td>
<td>5 - 6</td>
</tr>
<tr>
<td>80 - 17,5</td>
<td>442</td>
</tr>
<tr>
<td>1250</td>
<td>5 - 6</td>
</tr>
<tr>
<td>100 - 17,5</td>
<td>442</td>
</tr>
</tbody>
</table>
INSTALLATION AND OPERATING INSTRUCTIONS

Transformer Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 24</td>
<td>50</td>
<td>4</td>
<td>1,5</td>
<td>6,3</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.6,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>4</td>
<td>2,2</td>
<td>6,3</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.6,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4</td>
<td>2,9</td>
<td>6,3</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.6,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>4</td>
<td>3,6</td>
<td>10</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>4</td>
<td>4,7</td>
<td>10</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>4</td>
<td>5,8</td>
<td>16</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>4</td>
<td>7,3</td>
<td>16</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>4</td>
<td>9,2</td>
<td>16</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 006 13.20</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>4</td>
<td>11,6</td>
<td>20</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 006 13.25</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4</td>
<td>14,5</td>
<td>25</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 006 13.31,5</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>4</td>
<td>18,2</td>
<td>31,5</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.31,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 10 - 24</td>
</tr>
</tbody>
</table>

HV HRC Fuse Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800</td>
<td>5 - 6</td>
<td>23,1</td>
<td>31,5</td>
<td>10 - 24</td>
<td>442</td>
<td>30 006 13.31,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>5 - 6</td>
<td>29</td>
<td>50</td>
<td>10 - 24</td>
<td>442</td>
<td>30 014 13.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1250</td>
<td>5 - 6</td>
<td>36</td>
<td>50</td>
<td>10 - 24</td>
<td>442</td>
<td>30 014 13.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600</td>
<td>5 - 6</td>
<td>46,5</td>
<td>100</td>
<td>10 - 24</td>
<td>442</td>
<td>30 022 43.100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>5 - 6</td>
<td>57,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>on request</td>
</tr>
</tbody>
</table>

Notes

1. **NOTE!**
 - For switchgear with rated voltages up to 12 kV, a fuse slide for HV HRC fuse-links with dimension 292 mm is normally provided.
 - 7.2 kV fuse-links with dimension 192 mm as well as 24 kV fuse-links with dimension 292 mm are not permissible.

2. Mechanical time delay required (for switchgear ordered with 17.5 kV, this time delay is installed automatically).
8.7 Rating plates

IAC classification

This data (see item (3)) describes the internal arc classification of the panel according to IEC 62271-200. The entries \textbf{IAC A FL 16 kA 1 s} in the example shown mean:

- \textbf{IAC}: Internal Arc Classification
- \textbf{A}: Degree of accessibility A; for authorised personnel only; switchgear in closed service location; access for expert personnel only.
- \textbf{F}: Internal arc classification for the front side (Front)
- \textbf{L}: Internal arc classification for the lateral surfaces (Lateral)
- \textbf{R}: Internal arc classification for the rear side (Rear)
- \textbf{16 kA}: Tested short-circuit current
- \textbf{1 s}: Test duration

The IAC classification is referred to each panel. The data on the rating plate (see item (3)) describes the areas classified for the corresponding panel.
9 Switchgear maintenance

Maintenance
Under normal conditions, medium-voltage switchgear 8DH10 is maintenance-free. Exception: Air-insulated metering panels type ME1. Here, visual inspections are required under normal operating conditions. If necessary, clean the high-voltage parts.

Replacement of components
Due to the fact that all parts of this switchgear have been optimized to last the normal service life, it is not possible to recommend particular spare parts.

Information required for spare part orders of single components and devices:
- Type and serial number of the switchgear (see rating plates)
- Description/identification of the device or component on the basis of a sketch/photo or a circuit diagram.

10 End of service life

SF₆ gas

NOTE!
The equipment contains the fluorized greenhouse gas SF₆ registred by the Kyoto Protocol with a global warning potential (GWP) of 22 200. SF₆ has to be reclaimed and must not be released into the atmosphere.

☞ For use and handling of SF₆, IEC 62271-303 has to be observed: High-voltage switchgear and controlgear - Part 303 Use and handling of sulphur hexafluoride (SF₆) zu beachten.

Before recycling the materials, evacuate the gas professionally and prepare it for further use.

Recycling
The switchgear is an environmentally compatible product.

The components of the switchgear can be recycled in an environmentally compatible way by dismantling into sorted scrap and residual mixed scrap.

After evacuating the SF₆ gas, the switchgear mainly consists of the following materials:
- Sheet-steel, galvanized (enclosure and operating mechanisms)
- Stainless steel (vessel)
- Copper (conductor bars)
- Silver (contacts)
- Cast-resin based on epoxy resin (bushings and fuse boxes)
- Plastic material (arching chamber and fuse slide)
- Silicone rubber

The switchgear can be recycled in ecological manner in compliance with existing legislation.

Auxiliary devices such as short-circuit indicators have to be recycled as electronic scrap.

Batteries have to be recycled professionally.

As delivered by Siemens, the switchgear does not contain hazardous materials as per the Hazardous Material Regulations applicable in the Federal Republic of Germany. For operation in other countries, the locally applicable regulations must be followed.

For further information please contact your regional Siemens representative.
Installation

11 Before installation

11.1 Preliminary clarifications
In order to load the transport units in a suitable installation order, the local Siemens representative requires the following information from you several weeks before delivering the switchgear:

- Sketch of the installation room including the locations and numbers of the individual switchpanels and the storage space for the accessories
- Sketch of the access route from the public road to the switchgear building and information concerning the condition thereof (meadows, arable soil, sand, gravel...)
- Sketch of the transport route inside the switchgear building with the locations and dimensions of doors and other narrow points, as well as the floor number of the installation room
- Information about available lifting equipment, e.g. mobile crane, fork-lift truck, lifting truck, hydraulic jack, roller pads. If no lifting equipment is available, please notify this explicitly.

11.2 Switchgear room
Please observe the following points when selecting and setting up the switchgear room:

- Transport ways to the switchgear room
- Distribution and intermediate storage spaces
- Construction and load-bearing capacity of the floor
- Illumination, heating, power and water supply
- Dimensions of installation scaffoldings and foundation rails
- Installation of high-voltage cables
- Earthing system

11.3 Intermediate storage

<table>
<thead>
<tr>
<th>DANGER!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injury and damage to the stored goods if the storage space is overloaded.</td>
</tr>
<tr>
<td>⇒ Observe the load-bearing capacity of the floor.</td>
</tr>
<tr>
<td>⇒ Do not stack the transport units.</td>
</tr>
<tr>
<td>⇒ Do not overload lighter components by stacking.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTENTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire risk. The transport unit is packed in flammable materials.</td>
</tr>
<tr>
<td>⇒ No smoking.</td>
</tr>
<tr>
<td>⇒ Keep fire extinguishers in a weatherproof place.</td>
</tr>
<tr>
<td>⇒ Mark the location of the fire extinguisher.</td>
</tr>
</tbody>
</table>
If the comprehensive accessories, the delivered switchgear or parts thereof have to be stored before installation, a suitable storage room or place has to be selected and prepared.

Intermediate storage of the transport units:
- In original packing as far as possible
- Observe the permissible storage temperature from -25° C to +70° C in accordance with the installed secondary devices. In the individual case, the electronic components must be checked regarding the permissible limit temperature and the relevant temperatures for the application.
- In a weatherproof place
- Protected against damage
- If packed in seaworthy crates, the switchgear can be stored for a maximum of 6 months (desiccant bags).
- Store transport units in such a way that they can be taken out later in the correct order for installation.

Switchgear storage in closed rooms
As a rule, the switchgear should be stored in a closed room. The storage room must have the following characteristics:
- Floor with adequate load-bearing capacity (weights as per delivery note)
- Even floor to enable stable storage
- Well-ventilated and free of dust as far as possible
- Dry and protected against humidity and vermin (e.g. insects, mice, rats)
- Check humidity in the packings every 4 weeks (condensation)
- Do not unpack small parts to avoid corrosion and loss.

Outdoor storage of switchgear packed in seaworthy crates
If the switchgear or parts thereof are delivered in seaworthy crates, these can be stored up to 6 months in other rooms or outdoors. The storage place must have the following characteristics:
- Floor with adequate load-bearing capacity (weights as per delivery note)
- Protected against humidity (rain water, flooding, melting water from snow and ice), pollution, vermin (rats, mice, termites, etc.) and unauthorized access
- Place all crates on planks and square timber for protection against floor humidity
- After 6 months of storage, have the desiccant agent regenerated professionally. To do this, ask for expert personnel via your regional Siemens representative.

ATTENTION!
Supplied desiccant bags lose their effectiveness if they are not stored in the undamaged original packings.

- Do not damage or remove packing of desiccant bags.
- Do not unpack desiccant bags before use.
11.4 Tools / Auxiliary means

Before starting to work on the switchgear, provide for the tools/auxiliary means required:

- Angular screwdriver 10 DIN 911 (Allen screwdriver)
- Torx screwdriver Tx30
- Torque wrench 40 - 70 Nm
- Ratchet, reconnectable DIN 3122
- Extension DIN 3123 40 - 125
- Socket spanner inserts DIN 3124
- Socket spanner insert 10 mm with magnetic insert, extension > 360 mm
- Compensation shims for floor unevenness 0.5 – 1,0 mm
- Cleaning agent type ARAL 4005 oder type HAKU 1025/40
- Lifting truck
- Reinforcing bars, roller crowbars
- Transport rollers

11.5 Installation and fixing material

Before starting to install the individual components, provide for the required installation and fixing material.

12 Unloading and erecting the switchgear

12.1 Transport unit and packing

Packing

The transport units can be packed as follows:

- On pallets, covered with PE protective foil
- In a seaworthy crate (switchgear is sealed with desiccant bags in PE foil)
- Other packings in special cases (e.g. latticed crate, cardboard cover for air freight)

Transport unit

On the customer's request, transport units may consist either

- of individual panels with separate low-voltage compartment

or

- of pre-assembled "panel groups" with mounted busbars

and accessories.
Checking for completeness

12.2 Completeness and transport damage

- Check whether the delivery is complete and correct using the delivery notes and packing lists.
- Compare the serial numbers of the switchgear panels on the delivery note with those on the packing and the rating plates of the panels.
- Check whether the accessories are complete.

Checking for transport damages

- Temporarily open the packing in a weatherproof place to detect hidden damages. Do not remove the PE foil until reaching the final mounting position in order to keep the switchgear as clean as possible.
- Check the gas pressure indicator (SF₆-gas) (see Page 53, “Checking the ready-for-service indicator”).
- Inform the forwarding agent immediately about any defects or transport damages; if required, refuse to accept the delivery.
- As far as possible, document larger defects and transport damages photographically; prepare a damage report and inform the local Siemens representative immediately.
- Have the transport damages repaired, otherwise you may not start installation.
- Refit the packing.

ATTENTION!

The transport units may be damaged during unloading.

- Attach ropes far enough on the hoisting tackle so that they cannot exert any forces on the switchpanel walls under load.
- Do not climb onto the roof of the switchpanels.
- Observe the instructions on the packing.
- Unload the transport units in packed condition and leave packed for as long as possible.
- Do not damage the PE protective foil.

- Attach ropes far enough on the hoisting tackle so that they cannot exert any forces on the switchpanel walls under load.
- Wind the ropes around the ends of the wooden pallets.
- Unload the transport units and set them down as close to the switchgear building as possible in order to avoid unnecessary ways.
- Move the transport units into the building, if possible on their wooden pallets. Only remove packing where absolutely necessary in order to keep the switchgear as clean as possible.
- Remove foil only in the building, right before assembling the transport units, and temporarily to check for transport damages.
12.3 Transport to the place of installation (switchgear room)

⇒ Thoroughly clean the switchgear room, since extreme cleanliness is required during installation.
⇒ Move the transport units on their wooden pallets as far as possible.
⇒ Move the transport units to the switchgear room in the order of installation.
⇒ Move the transport units inside the building to the place of installation using a lifting truck, fork-lift truck or rollers.
⇒ Set the transport units down in the correct sequence directly in front of the place of installation.

Removing the switchgear from the wooden pallets

The transport units are screwed on the wooden pallets with transport angles.

⇒ Remove the PE foil.
⇒ Remove the fixing screws from the transport angles / pallet.

If the switchgear cannot be lifted directly from the wooden pallet onto its mounting position, please proceed as follows:

⇒ Lower the transport units by means of the lateral transport angles onto roller pads (reinforced rollers) or tubes.
⇒ Lift the switchgear at the side edges with roller crowbars and slowly lower it onto the mounting position.

Switchgear transport by means of transport eyes

ATTENTION!

Danger due to switchgear falling down if the fixing gear is overloaded.
⇒ The spreading angle of the fixing gear must always be < 90° sein.

Fig. 18: Switchgear transport with crane
Fix panel groups always at the crane eyes of the joint between the two exterior panels and the next interior panel (see illustration).

Lift or lower just slowly, as the switchgear will swing into the centre of gravity when it is lifted.

While lifting, observe parts laid inside such as e.g. cable-type transformers, connecting cables.

Installing transport units

Please observe the following items when preparing the foundation:

- A suitable foundation can be a false floor, a double floor or a reinforced-concrete foundation. The reinforced-concrete floor must be equipped with foundation rails for supporting the panels.
- As for design and construction of the foundation, the relevant standards DIN 43 661 “Fundamentschienen in Innenanlagen der Elektrotechnik” (Foundation rails in electrical indoor installations) and DIN 18 202 “Maßtoleranzen im Hochbau” (Blatt 3) (Measuring tolerances in structural engineering (Sheet 3)) apply.
- The dimensions of the floor opening and the fixing points of the switchgear frame are given in the switchgear documentation.
- Determine level differences between the installation surfaces of the panels using a measuring sheet, and compensate them with shims.

You may only start installing the transport units when

- all transport damages have been repaired
- the base frame has been levelled (1 mm/m), see DIN 43661
- the gas filling of the switchgear vessels has been checked
- the accessories and the required material are complete
12.4 Checking the ready-for-service indicator

The switchgear is filled with insulating gas at a relative pressure. Before starting installation, please verify that the gas filling of the switchgear is sufficient on the ready-for-service indicator located on the left side of the control board.

☞ Read the ready-for-service indicator.

If the indicator is in the green area, the gas density is in order. If the indicator is in the red area:

☞ Check the auxiliary switch of the ready-for-service indicator.

Checking the auxiliary switch (option) of the ready-for-service indicator
The auxiliary switch (option) of the ready-for-service indicator can latch tight due to extreme shocks during transport. Then, the pointer is in the red area.

☞ Remove the front plate of the switchgear. Push the lever of the auxiliary switch carefully until it trips.

✓ The pointer must jump back into the green area. If not, please stop installation and contact the regional Siemens representative.
13 Assembling the switchgear

13.1 Floor openings and fixing points

The switchgear must be fastened to the foundation so as to guarantee sufficient pressure resistance. We recommend to fasten the switchgear with at least 4 bolts size M8 in each end panel; for intermediate panels with a width of 350 mm, at least 2 bolts size M8 per panel, and intermediate panels with a width of more than 350 mm, 4 bolts size M8 per panel.

Precondition: Operating mechanism in “EARTHED” position.

Please observe the following for room planning and switchgear installation:

- Dimensions of floor openings according to the dimension drawing in the switchgear documentation.
- Direction of pressure relief according to the height of the cable basement in accordance with the cable bending radius.
- Relief rooms according to the dimension drawing in the switchgear documentation.

ATTENTION!

- Remove the front cable compartment cover from the subframe of the panels. To do this, undo the bolted joints of the cable compartment cover (option). Then push the unlocking lever down and keep it in this position, lift the cover and remove it to the front.
- For direct fastening to the concrete, drill holes into the foundation and insert dowels.
- Place shims in the spaces between the switchgear frame and the foundation in the area of the fastening cutouts, so that the switchgear is not distorted when it is screwed tight.
- Bolt the switchgear onto the foundation or the foundation rails.
- As for dimensions and floor openings, please refer to the dimension drawing in the switchgear documentation.

Installing switchgear with pressure absorber

The switchgear can be equipped with a pressure absorber which is either pre-assembled at the factory or supplied separately.

If the pressure absorber is supplied separately, it must be bolted onto the foundation or foundation rails first. Then, the switchgear is set down on the pressure absorber and...
Installation

bolted together. The fixing points of the absorber and the switchgear are described in the dimension drawings of the switchgear documentation.

- Set the pressure absorber onto the foundation or the foundation rails, align it and bolt it tight.
- Set the switchgear onto the pressure absorber and bolt the two units together.
- In the pressure absorber was pre-assembled: Set the switchgear with the pressure absorber onto the foundation or the foundation rails, align it and bolt it tight.

For switchgear with pressure absorber in wall-standing arrangement (without ME1):

- Fasten the air guides at the prepared retaining points of the left and right end wall.

13.2 Extending existing switchgear or replacing components

In the instructions given in the following sections it is assumed that a new switchgear is being installed which has not yet been connected to the mains, and that it is therefore not live.

If you are going to extend an existing switchgear assembly or replace components, you have to take the following additional measures in advance:

Switching off high voltage
- Isolate the switchgear.
- Secure the switchgear against reclosing.
- Verify safe isolation from supply of the switchgear (see Page 117, "Verification of safe isolation from supply").
- Earth all feeders (see Page 103, "Operating the three-position switch-disconnector/disconnecting circuit-breaker (type LST)").

Switching off auxiliary voltage
- Switch off auxiliary voltage.
- Secure auxiliary voltage against reclosing.
- Verify safe isolation from supply.
Installation

Discharging the stored-energy spring mechanism

Switch all circuit-breakers type 3AH to the OPEN, CLOSED and again to the OPEN position one after the other (see Page 108, "Circuit-breaker panels: Operating vacuum circuit-breaker type 3AH").

Verify that the springs are discharged. The "spring not charged" indication must be visible.

Preparing extension

<table>
<thead>
<tr>
<th>DANGER!</th>
</tr>
</thead>
<tbody>
<tr>
<td>High voltage! Installation work on switchgear in operation is dangerous to life.</td>
</tr>
<tr>
<td>Make sure that high voltage and auxiliary voltage are off.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTENTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of getting jammed while unlatching charged stored-energy spring mechanisms.</td>
</tr>
<tr>
<td>Make sure that all stored-energy spring mechanisms are discharged.</td>
</tr>
</tbody>
</table>

- Remove the side wall of the panel provided for switchgear extension.
- Operating mechanism in “EARTHED” position
- Remove the cable compartment covers of the panel provided for extension and the adjacent panel. To do this, push the unlocking lever down and keep it in this position, then lift the cover and remove it to the front.
- Dismantle the cable connections of the two panels.
Unscrew the front plate of the control board, the cable brackets and the busbar partition of the two panels (see illustration).

- In block versions without connected busbar: Make sure that unused bushings are equipped with surge-proof caps.
- Now you can extend the switchgear or replace components as described hereafter.

13.3 Bolting transport units together

The first transport unit is on its mounting position and the others are placed at a small distance.

- Align the first transport unit laterally.
- Lay shims under the panel according to the measuring sheet of the base frame.
- All switchpanels must be in vertical position and at the same height.

Approaching and aligning transport units
- Put 11 spacing discs Ø10.5 into the felt strips on the right connection side at the joint.
- Carefully approach the next transport unit completely to the one that has already been aligned.
- Align the approached transport unit, and make sure that it is vertical and at the necessary height using shims.
Joining transport units

- Remove the rear top plates of the panels at the point where the transport units touch (joint).
- Remove the cable compartment covers of all panels. To do this, switch the three-position switch-disconnector to the “EARTHED” position (see Page 115, “Three-position switch-disconnector in circuit-breaker panel (with type 3AH): Switch position EARTHED (with optional interlock”), push the unlocking lever down and keep it in this position, then lift the cable compartment cover and remove it to the front.
- Unscrew the front plate of the control board, the cable brackets and the busbar partition of all panels.
- Push 11 fixing bolts through the frame of the left-hand panel and the partition, and screw them into the frame of the right-hand panel. The associated nuts are permanently pressed in there.
- Refit the top plates.
- Check whether the bolted transport units are in vertical position. If not, align them using shims.
- Interconnect low-voltage compartments (see Page 78, “Installing low-voltage compartments”).

13.4 Fastening the switchgear to the foundation

The panels can be fastened to the foundation in the following ways:
- Bolted to foundation rails.
- Welded to foundation rails.
- Screwed into the concrete using size 10 dowels if there are no foundation rails available.

The base pieces of the panel frames contain cutouts for fastening the switchgear (see dimension drawing).

Fig. 20: Fastening the switchgear to the foundation

Fasten each panel to the foundation as follows:
- For direct fastening to the concrete, drill holes in the foundation and insert size 10 dowels.
- Place shims in the spaces between the panel frame and the foundation in the area of the fastening cut-outs, so that the switchgear is not distorted when it is bolted on, and the seam does not cover any air-filled gaps when the switchgear is welded on.
- Bolt or weld the switchgear to the foundation.
- Remove any dirt, as extreme cleanliness is required during installation.
- Paint welding seams to protect them against corrosion.
13.5 Assembling the busbars

Normally, the busbars are already assembled within the transport units. Assembly work is only required at the joints of the transport units.

Fig. 21: Interconnecting busbars between transport units

Fig. 22: Busbar, unscreened version: \(L_1 \) = Reference dimension for panel width, \(L_2 \) = Reference dimension for panel spacing

1 Bushing
2 Cross adapter
3 Busbar with insulation:
 630A: ECu ; 32 x 4
 800A to 1250A: ECu ; 32
4 Threaded bolt M12/M16
5 Contact shells
6 Strain washer DIN 6796-12
7 Hexagonal nut ISO 4032-M12
8 Stopper
9 Contact shells for end adapter
10 Capacitive tap
11 End adapter
Fig. 23: Busbar, screened version (i.e. with additional earthed conductive layer around the insulation): \(L_1 \) = Reference dimension for panel width, \(L_2 \) = Reference dimension for panel spacing

1. Bushing
2. Earthing connection
3. Cross adapter
4. Threaded bolt M12/M16
5. Contact shells
6. Strain washer DIN 6796-12
7. Hexagonal nut ISO 4032-M12
8. Busbar with insulation:
 - 630A: ECu ; 32 x 4
 - 800A to 1250A: ECu ; 32
9. Screw insert type SE
10. Cap
11. Fit component
12. End adapter
13. Capacitive tap
14. Control layer

The busbar components for the individual panels, respectively for the joint of panel groups are delivered separately with the accessories.

- Do not unpack busbar components until right before assembly.
- Before assembling the busbars, perform all panel interconnection work (see Page 57, "Bolting transport units together").
Interconnection of adjacent transport units/individual panels

<table>
<thead>
<tr>
<th>ATTENTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the electrical contact is insufficient, the busbars will be damaged during operation.</td>
</tr>
<tr>
<td>- All busbar assembly work must be carried out with particular care. Above all, avoid damaging the contact surfaces.</td>
</tr>
<tr>
<td>- Observe extreme cleanliness.</td>
</tr>
<tr>
<td>- No smoking.</td>
</tr>
<tr>
<td>- Brush oxidised copper surfaces bright before connection.</td>
</tr>
</tbody>
</table>

Preparing busbars

- Make sure that all busbar components supplied are complete.
- Brush oxidised copper surfaces bright before connection.
- Clean dirty busbar components dry with a lint-free cloth.

Do not grease the cross/end adapters in the area of the stoppers until right before inserting the stoppers, as they might get dirty during the assembly work.

- Grease the push-on surfaces of insulating parts (high-quality joints) in the cross/end adapters, stoppers or screw inserts, as well as the ends of the busbar insulation with the mounting paste supplied in order to make sure that the parts will still be detachable after longer periods of time.
If there are no cross/end adapters mounted on a panel yet:

- Screw the threaded bolt M12/M16 into the bushings at the busbar connection by hand with a screwdriver size 10x1.6. Do not damage the bushings while doing this (maximum tightening torque 10 Nm). If necessary, rework the thread observing the reference dimension 79 ±2 mm.
- Mount the components of the cross/end adapters on the bushings according to the illustration. Make loose screwed connections only.

When the cross/end adapters are mounted:

- If available, remove the caps from the busbar cross/end adapters in all panels.
- Remove the stoppers or the screw inserts of the cross/end adapters from all panels.
- On the two exterior panels loosen the M12 nuts and screw them out approx. 5 mm.
- On the central panel, undo the M12 nuts completely. Take out the strain washers and the upper contact shells (only with unscreened busbar).
- On the central panel, take out the cross adapters approx. 100 mm by turning and pulling uniformly.

Connection to an existing switchgear:

- Remove the existing end adapters of the end panel completely.
- Put the cross adapters in the central panel loosely on the bushings.

Interconnecting busbar units

- Isolated busbar (unscreened)
- If the busbars are not pre-assembled: Determine the dimension of the panel spacing and select suitable busbar units.
- Push the missing busbar unit into the cross adapter of panel A, then thread it into the cross/end adapter of panel B (to do this turn and pull the cross/end adapter).
- Push the second busbar unit into the cross/end adapter of panel C and thread it into the cross/end adapter of panel B as well.
- Push and turn the cross adapter of panel B completely on the bushing until it reaches its final position.
- Proceed in the same way with the other two phases.
Screened busbar

- Lay the contact shells (with fit component in case of end adapter) on the ends of the busbar and hold them.
- Push the cross/end adapter on the busbar.
- Push the missing busbar unit into the cross adapter of panel A, then push the cross/end adapter of panel B onto the bushing.
- Push the second busbar unit into the cross/end adapter of panel C and thread it into the cross/end adapter of panel B as well.
- Push and turn the cross adapter of panel B completely on the bushing until it reaches its final position.
- Proceed in the same way with the other two phases.

![Image of busbar installation]

Fixing busbars

- Align each busbar unit centrally between the panels by shifting.
- Refit the contact shells and strain washers on the central panel.
- Refit M12 nuts in all panels, tightening torque 50 Nm.
- Refit stoppers or screw inserts in all panels laying a nylon thread between the cross/end adapter and the stopper or the insert in order to let excess air out. Pull out the nylon thread after screwing tight. Tightening torque 30 Nm.
- In case of screened busbars, push caps on the cross/end adapters.
Final work

⇒ Remove residual mounting paste.

ATTENTION!
Risk of flashover on unused, live bushings.
⇒ Cover unused bushings with surge-proof caps.

⇒ Clean the busbars with a soft, lint-free, dry cloth.

Fig. 25: Screened busbar

Fig. 26: Unscrenened (isolated) busbar

⇒ Connect the earthing cable of all end/cross adapters to the earthing bolts of the switchgear frame. Tightening torque 5 Nm.
✓ Now the busbar units of the switchgear are completely interconnected.
13.6 Installing metering panels type ME1

There are several types and designs of metering panels available, which are executed in different ways:

- Metering panel type ME2: Design with combined transformers
- Metering panel type ME3: Design with voltage transformers and three-position switch

NOTE!
Installation (e.g. busbars) of ME2 and ME3:

- Same as for standard panel types (see Page 59, “Assembling the busbars”).

![Diagram of transformers installation](image)

Fig. 27: Dimensions and mounting positions of transformers in an air-insulated metering panel type ME1 (dimensions in mm)

- Bolt current and voltage transformers for phase L2 centrally onto the C-rails. For 12 kV versions: Z-angle (5) for fixing the C-profile turned to the front. For 24 kV: Z-angle (5) for fixing the C-profile turned to the back.
- Bolt the other transformers onto the C-profiles at a distance of 255 ± 2 mm.
- Align voltage transformers at a height of 1135 ± 2 mm and bolt tight.
- Align current transformers at a height of 675 ± 2 mm and bolt tight.
- Now the current and voltage transformers are installed. The following section describes how to continue with the connection of the metering panel busbars.
Installation

Connecting metering panel busbars

The cable brackets and the busbar cover of the adjacent panels must be removed.

Preparing busbars

- In screened versions, remove the caps from the busbar cross/end adapters of the adjacent panels.
- Remove the stoppers or screw inserts of the busbar adapters.
- Undo M12 nuts.
- Remove strain washers and upper contact shells.
Preparing metering panel busbars

The metering panel busbars have different designs, depending on whether there is a transfer panel located on the left or on the right of the metering panel:

Fig. 29: Metering panel busbars: For connection to busbars on both sides (metering panel in run of busbar)

1. Shields arranged centrally on slope
2. Remove neoprene ring and screw-type bushing
3. Bracing (for 25 kA/1s only)

Fig. 30: Metering panel busbars: Left side for connection to transfer panel, right side for connection to busbar (transfer panel located on the left of the metering panel ME1)

1. Shields arranged centrally on slope
2. Remove neoprene ring and screw-type bushing
3. Bracing (for 25 kA/1s only)
Figure 31: Metering panel busbars: Left side for connection to busbar, right side for connection to transfer panel (transfer panel located on the right of the metering panel ME1)

- Remove neoprene ring and screw-type bushing
- Shields arranged centrally on slope
- Bracing (for 25 kA/1s only)

ATTENTION!
Risk of flashover due to damaged insulation of metering panel busbars.

- Do not damage the insulation, avoid contact of insulation with metal edges.

- Find out the suitable units of the metering panel busbars according to the illustration corresponding to the mounting position.
- Push the shields onto the metering panel busbars according to the illustration. Arrange the shields centrally on the inclined metering panel busbars, and position them at the same distance to the transformer connections on the parallel metering panel busbars. Observe the position.
- Remove the screw-type bushing marked in the illustration in the side wall of the metering panel.
- Push the screw-type bushing and the neoprene ring onto the bars marked in the illustration (only for panels with 25 kA/1s).
- Route the metering panel busbars through the screw-type bushings in the side wall of the metering panel.

Connecting metering panel busbars
- Thread the screw-type bushing with the neoprene ring onto the metering panel bushbar.
- Push reduction pieces onto the ends of the metering panel busbars protruding from the metering panel.
Fit the clamping ring on the busbar. Later, the pin must lie in the partition level of the contact shells.

In case of current transformers with a small depth, increase the distance between the contact shell and the transformer using spacing rings, so that the busbars can be mounted without mechanical stress.

Insert the metering panel busbar with reduction piece and clamping ring into cross/end adapter and align it.

If you have mounted the transformers yourself: Align metering panel busbars starting from the connecting point in the adjacent panel and, if required, shorten them and strip the insulation according to the position of the transformer connections.

Connect the busbar bracing with the screw-type bushing and fasten it to the panel at the specified positions (for 25 kA/1s only).

Fixing busbars

Push the contact shells and strain washers onto the busbar cross/end adapters.

Refit M12 nuts. Tightening torque 50 Nm.

Refit the stoppers or screw inserts laying a nylon thread between the cross/end adapter and the stopper or the insert in order to let excess air out. Pull out the nylon thread after screwing tight. Tightening torque 30 Nm.

Mount the screw-type bushing with the neoprene ring into the insulating plate.

Tighten the metering panel busbars at the ball terminals of the current transformers. Tightening torque 70 Nm.
Minimum distances for cable connections

The following minimum distances must be adhered to for connection of high-voltage cables in metering panels.

The following illustration shows the minimum distances required:

Fig. 32: Minimum distances of cable connections in metering panel type ME1-K

ATTENTION!

Risk of flashover if the minimum distances between high-voltage cables and live or earthed parts are too small.

- Observe and check minimum distances during installation.

- Connect high-voltage cables at the upper and lower current transformer terminal.
13.7 Connecting voltage transformers in metering panels type ME1

The voltage transformers are pre-assembled in the metering panels above the current transformers at the factory.

The voltage transformers must be connected to the current transformers at site with the connecting cables supplied with the voltage transformers.

The voltage transformers can be connected either at the lower or upper terminals of the current transformers, depending on the circuit diagrams.

Standard voltage transformer connection

Fig. 33: Connection to the upper current transformer terminal

1. Voltage transformer
2. Connecting cable
3. Upper current transformer terminal

Fig. 34: Connection to the lower current transformer terminal

4. Current transformer
5. Lower current transformer terminal
Installation

Voltage transformer connection in metering panels with pressure relief duct

Fig. 35: Connection to the upper current transformer terminal

Fig. 36: Connection to the lower current transformer terminal

1. Voltage transformer
2. Connecting cable
3. Upper current transformer terminal
4. Current transformer
5. Lower current transformer terminal
6. Connecting bar with control cap

Fig. 37: Minimum distance between control caps and enclosure: min. 140 mm
Connection of two-pole voltage transformers

ATTENTION!
Risk of flashover if the minimum distances between the connecting cables of the current and voltage transformers are too small.

- Cut the connecting cables between the current and voltage transformers in a suitable way, so that the minimum distances required are guaranteed during operation.

ATTENTION!
Risk of flashover if the minimum distances between live parts and the flexible steel tubes for cable routing are too small.

- If flexible steel tubes are used in the cable connection compartment for cable routing: Lay the flexible steel tube keeping enough minimum distance to live parts.
- Cut the connecting cable to suit the distance between the current and voltage transformer terminal.
- Strip the insulation of the connecting cable and press the cable lug on.
- Connect the connecting cable to the current and voltage transformer according to the circuit diagrams.
Installation

13.8 Mounting earthing bolts in metering panels type ME1

To earth the metering panel busbars or the high-voltage cables when the current transformers are removed, earthing bolts must be mounted on the busbars or the cable connection links. The earthing bolts are available as accessories.

Minimum distances for mounting earthing bolts

<table>
<thead>
<tr>
<th>ATTENTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of flashover if the minimum distances between the earthing bolts and live parts are too small.</td>
</tr>
<tr>
<td>➔ Observe and check minimum distances during installation.</td>
</tr>
</tbody>
</table>

Fig. 39: Minimum distances of earthing bolts on metering panel busbars

Mounting earthing bolts on metering panel busbars

The earthing bolts are mounted on the current transformer terminals, directly below the ball terminals.

Fig. 40: Earthing bolts below ball terminals
- Strip the insulation of the metering panel busbar below the ball terminal at a length of 46 mm.
- Mount the earthing bolts directly below the ball terminal.

NOTE!

At the lower current transformer terminal, the earthing bolts must be mounted on the busbars turned by 20°.

- Mount the earthing bolts at the lower current transformer terminal according to the following illustration.

Mounting earthing bolts at the cable connection

The earthing bolts are mounted directly on the cable connection links at the current transformer.

![Diagram of earthing bolts alignment](image-url)
13.9 Mounting earthing accessories in the metering panel type ME1

Fasten the earthing bolts at the upper or lower cable connection link.

Mount the earthing accessories on the earthing connection in metering panel ME1 as shown below.
13.10 Switchgear earthing

- Connect the earthing terminal (bolt M12) of one panel to the station earth. For switchgear assemblies with more than five panels, connect at least every fifth panel to the station earth.

13.11 Installing the earthing busbar

The units of the earthing busbar must be interconnected at the joints of the transport units.

- Detach the pre-assembled link provided at the joint.
Brush oxidised copper surfaces and apply a thin film of mounting paste.

Push the link through the opening in the side wall of the subframe, and bolt it together with the adjacent unit of the earthing busbar.

Proceed in the same way with the other joints.

Now the units of the earthing busbar of the complete switchgear are interconnected.

After that, refit the busbar compartmentalisation and the cable brackets on all panels. Do not mount the front plate of the control board before connecting the auxiliary circuits (see Page 92, "Connecting auxiliary circuits").

13.12 Installing low-voltage compartments

All 3AH circuit-breaker panels are equipped with low-voltage compartments to accommodate the secondary equipment; other panel types just according to their design.

Normally, the low-voltage compartments are already mounted on the associated panel. After joining the panels, bolt the low-voltage compartments together at the joint - at 2 points (for a compartment height of 600mm) or at 4 points (for a compartment height of 900mm).

Put the low-voltage compartment on top of the associated panel.

Bolt the base plate of the low-voltage compartment together with the panel at its four corners.

Proceed in the same way with the other low-voltage compartments.

Bolt the low-voltage compartments of adjacent panels together.

Establish the electrical connection according to the circuit manual.
14 Electrical connections

The operations described in this section are listed by logical content and are therefore not always in the actual order of execution. Please read this section before starting and decide by yourself in which order you want to perform the operations.

In the instructions given in the following sections it is assumed that a new switchgear is being installed which has not yet been connected to the mains, and that it is therefore not live.

14.1 Connecting high-voltage cables

ATTENTION!

Surfaces of high-quality joints can easily be damaged by incorrect handling.

⇒ Observe extreme cleanliness.
⇒ Avoid damages caused by the threaded bolt when pushing on.

ATTENTION!

In case of spare feeders without connected cables, please observe the following:

⇒ Switch the three-position switch-disconnector to “EARTHED” position and lock it.
⇒ Alternatively: Mount surge-proof caps.

ATTENTION!

During metal working, please ensure the following:

⇒ Do not drill into the vessel.
⇒ Do not leave any metal cuttings on the vessel in order to avoid rust layers.
Installation

Connecting feeder cables

Fig. 44: Cable connection in ring-main panel type RK

1. Unlocking lever
2. Phase L1: Make Euromold, type K400 LB as cable elbow plug
3. Phase L2: Make Euromold, type K400 TB as cable T-plug
4. Phase L3: Elbow adapter, make Siemens, type AKE 20/630
5. Cross member
6. Cable clamp
7. Cable bracket
8. Earthing connection for the cable shield and the plug housing
Fig. 45: Ring-main cable connection (side view)

1. Earthing bolt M12 for connection to station earth
2. Adjustment area of the C-profile with double T-plugs
3. Cable bracket (C-profile)
4. T-plug for bushing with thread M16x2
5. Vessel
6. Bushing with outside cone
7. Threaded bolt for cable lug attachment
8. Screw-type cone for cable testing
 * Depending on the sealing end
 ** Max. mounting space for cables and/or surge arresters with standard cable compartment cover

Fig. 46: Cable connection in transformer panel type TR

1. Euromold type AWGL
2. Euromold type K158 LR
3. Euromold type AGW 20/250 (with metal housing)
Installation

Work operations

Precondition: The feeder must be earthed (see Page 115, “Three-position switch-disconnector in circuit-breaker panel (with type 3AH): Switch position EARTHED (with optional interlock)”).

Undo the screwed joints of the cable compartment cover (optional). Then push the unlocking lever ① of the cable compartment cover down, lift the cable compartment cover and remove it to the front.

If necessary, detach the cross-members ⑤ to swing in the cables.

Pre-adjust the cable bracket ⑦ and the lower part of the cable clamps.

If provided: Mount cable-type current transformers (see Page 84, “Cable connection with cable-type current transformers”).

Fit the cable plugs on the conductor ends according to the manufacturer’s instructions.

Carefully coat the push-on surfaces (high-quality joints) in the plug sets and the bushing cone with mounting paste (scope of supply of the plug set).

Push the plug sets ② to ④ onto the bushing and fix them according to the manufacturer’s instructions. Observe the phase sequence!

Mount the upper part of the cable clamps ⑥, align the cable bracket and bolt it tight.

Connect the cable shield and the earthing of the plug housing at the front cross member.

Cable installation in switchgear with pressure absorber

Fig. 47: Switchgear with pressure absorber

Remove the cross member ① and the front plate ② of the pressure absorber.
Undo the two fixing nuts and take the front floor cover out.

Lead the high-voltage cables into the cable connection compartment.

Push rubber sleeves over the high-voltage cables.

Push the high-voltage cables with the rubber sleeves into the cutouts provided for this purpose in the floor cover.

Hang the front floor cover in again, observing that the floor covers are correctly seated in the slots of the rubber sleeves.

Bolt the floor covers together using two fixing nuts.

Refit the cross member and the front plate of the pressure absorber.

Three elongated holes are provided in the front floor cover for fastening to the foundation.

Fasten the front floor plate to the foundation together with the front plate of the pressure absorber using three screws.
14.2 Connecting double cables and surge arresters

Double cables and surge arresters can be connected to ring-main feeders using adequate plug-in cable systems.

Please observe the following:
- Depending on their type, double cable connections require a deep cable compartment cover and larger floor openings.
- Depending on their type, surge arresters also require a deep cable compartment cover.

For details please refer to the order documents.

14.3 Cable connection with cable-type current transformers

The transformer mounting plates are pre-assembled on the cable bracket at the factory. The cable-type current transformers are supplied in the cable compartment and must be mounted on the high-voltage cables at site.

Depending on the design or overall height of the cable-type current transformers, the transformers are mounted in the cable compartment or partly underneath the cable compartment.

| Standard | Option |

1 Three-phase current transformer type 4MC63
2 Cable-type current transformer type 4MC7033
Installation and Operating Instructions 8DH
Revision 05

Installation

Principle of installation for cable-type current transformers

Remove the cable compartment cover.

If necessary, remove the lower cross member of the switchgear frame.

Take the supplied cable-type current transformers out of the cable connection compartment.

Lead the high-voltage cables into the cable connection compartment.

Push the cable-type current transformers on the high-voltage cables.

Mount the cable plugs according to the manufacturer’s instructions.

Position the pre-assembled transformer mounting plates at the cable bracket in such a way that all three cable-type current transformers can be mounted.

Swing the high-voltage cables in together with the cable-type current transformers, and connect the cable plugs to the cable feeder see Page 79, “Connecting high-voltage cables”.

Fig. 49: Cable connection with cable-type current transformers type 4MC7033

![Diagram showing cable connection and components]
14.4 Connecting voltage transformers at the cable feeder

To connect voltage transformers at the cable feeder, the transformer mounting plate must first be adjusted to the necessary height. This height adjustment must be performed with removed cables.

ATTENTION!

<table>
<thead>
<tr>
<th>While working on metal-coated voltage transformers, the coating may be scratched or damaged. Then, the voltage transformers are not safe-to-touch anymore.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work carefully while mounting metal-coated voltage transformers.</td>
</tr>
<tr>
<td>Take care not to scratch or damage the metal coating.</td>
</tr>
</tbody>
</table>

Preparations
The cable compartment cover of the feeder must be removed, and there must not be any cables connected.

The fixing facilities for the transformers are located right over the cable connections.

- Undo the transport fixing of the transformer connection leads.
- Remove the transformer fixing bolts and protective covers of the bushings.

Adjusting transformer mounting plate

- Screw the centring bolt into the left-hand bushing (L1).
- Push the transformer together with its support onto the guide bolts.

- The centring bolt must penetrate easily into the connection socket of the transformer.
If required, correct the position of the transformer mounting plate by adjusting the upper and lower nut ①. Check again.

Screw the centring bolt into the right-hand bushing (L3) and adjust in the same way.

Screw the centring bolt into the central bushing (L2) and adjust in the same way.

Remove the centring bolt.

Now the transformer fixing is adjusted for transformer installation. The cables can be connected to the feeder.

Connecting transformers

If a power-frequency voltage test is planned at site after installation (see Page 98, “Preparing the power-frequency voltage test”), do not mount the voltage transformers yet.

The height of the transformer mounting plate must have been adjusted before connecting the cables (see above). The cables are connected to the feeder, the stoppers of the cable plugs must be removed.
Push the transformer onto the guide bolts in front of the left-hand cable plug (L1) together with its support. The transformer cone must be completely inserted in the T-plug.

Tighten the transformer fixing bolts by turns and uniformly.

Mount the right-hand transformer (L3) in the same way, then the intermediate one (L2).

Plug the low-voltage connector into the transformers according to the phase designation.

Now the voltage transformers are now connected to the cable feeder.

14.5 Installing/removing busbar voltage transformers

<table>
<thead>
<tr>
<th>ATTENTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>While mounting metal-coated voltage transformers, the coating may be scratched or damaged. Then, the voltage transformers are not safe-to-touch anymore.</td>
</tr>
<tr>
<td>Work carefully while mounting metal-coated voltage transformers.</td>
</tr>
<tr>
<td>Take care not to scratch or damage the metal coating.</td>
</tr>
</tbody>
</table>

If a power-frequency voltage test is performed before commissioning (see Page 98, “Preparing the power-frequency voltage test”), the voltage transformers must be removed.

To replace busbar voltage transformers, the panels concerned must be accessible from the rear and from above.

The panel to be equipped with voltage transformers must also be equipped with a low-voltage compartment.
Preparing removal or installation

- Open the low-voltage compartment, unscrew the base plate ① and take it out. In highly equipped low-voltage compartments, undo the front DIN-rail ②.

- Remove the crane eye ① and the top plate ②, and remove the rear wall ③ upwards.

- If there are no transformers mounted yet: Take the surge-proof caps off the busbar bushings.

Removing transformers

- Detach the low-voltage connectors at the transformers.
- Mount the handles supplied.
- Undo the transformer fixing bolts. Tools required:
 - Socket spanner extension
 - SW 10 insert with magnet

 To hold the bolt in the insert, grease may also be used.
Installation

Remove the voltage transformer upwards.

If the voltage transformers are not going to be mounted again, the bushings must be closed with surge-proof covers.

Prepare transformer installation:

- Screw the handle on the transformer and remove the transformer type plate.
- Coat the inside cone of the transformer with mounting paste.

- Insert the transformer cone.
Mounting and connecting transformers

To let excess air out, put a nylon thread or cable strap into the inside cone and fix it on the outside of the transformer (adhesive tape).

Take the transformer by the handle and mount it onto the bushing from above. Take care that the nylon thread does not get out of place.

Bolt the transformer tight four times and pull the nylon thread out carefully. Tools required:

• Socket spanner extension
• SW 10 insert with magnet

Mount the two other transformers in the same way.

Final work

Lead the low-voltage plug connector of the transformers through the base plate of the low-voltage compartment, and connect it to the mating socket according to the phase designation.

Bolt the base plate of the low-voltage compartment on again and close the low-voltage compartment.

Bolt the cover of the transformer assembly on again. Fix loose DIN-rail again, if required.

Now the voltage transformers are now connected to the busbar.
14.6 Connecting auxiliary circuits

Fig. 50: Openings between the panels for auxiliary circuits

1. Bus wire (optional)
2. Low-voltage niche for ME1 panel

Fig. 51: Position of wiring ducts

1. Bus wire (optional)
2. Low-voltage niche for ME1 panel
Installation

You will require the circuit diagrams supplied.
Work operations

ATTENTION!
The transmission linkage of the ready-for-service indicator must move freely in order to show service readiness.

⇒ Lay the cables in such a way that they do not touch the linkage of the ready-for-service indicator.
⇒ Remove the front plate of the switchgear.
⇒ Following the circuit diagrams, connect the wires 7 to the terminal strip 1 or directly to equipment terminals (e. g. CAPDIS S2+, short-circuit indicator) and lay them cleanly.
⇒ Do not switch on auxiliary voltage yet.

DANGER!
If the ready-for-service indicator does not operate properly and the switch-disconnector is operated without the switchgear being ready for service, this can cause an arc fault that will damage the switchgear and endanger the life of the people present.

⇒ Make sure that the operating linkage of the ready-for-service indicator keeps on moving freely.
⇒ Open the low-voltage compartments.
⇒ Connect the cables according to the circuit diagrams and lay them cleanly. Use the existing wiring ducts and the specified openings only. Observe polarisation.
⇒ Do not switch on auxiliary voltage yet.

14.7 Correcting circuit diagrams
⇒ Note any modifications which may have been made during installation or commissioning in the supplied circuit diagrams.
⇒ Send the corrected documentation to the local Siemens representative so that the modifications can be included.
15 Commissioning

15.1 Final work

Rating plate / type plate
- Check the data on the rating plate and the auxiliary voltage of the control and end devices as against the requirements.

Checking ready-for-service indicator
- Check ready-for-service indicator (see Page 53, “Checking the ready-for-service indicator”).

Switchgear fixing
- Check switchgear fixing.

Checking bolted joints
- Check the tightening torques of the earthing connections.
- Check the tightening torques of the bolted joints of the low-voltage equipment at random.
- Check all parts of the switchgear that have been disassembled and assembled again at site during installation or that have been installed subsequently, in order to verify correct assembly and completeness.

Checking auxiliary cable connections
- Check correct wiring according to the circuit diagrams.
- Check clamping and plug-in connections at random (perfect contact, labels, etc.).

Checking high-voltage connections
- Check earthing of cable terminations on all connected high-voltage cables.
- If required, test cables (see Page 121, “Cable testing”).
- Cover unused high-voltage connections with surge-proof caps.

DANGER!
Mortal danger due to live parts.
- Isolate the switchgear.
- Secure against reclosing.
- Verify safe isolation from supply.
- Earth and short-circuit.
- Cover or barrier adjacent live parts.

DANGER!
Mechanical components may move quickly, even remotely controlled.
- Do not remove covers.
- Do not reach into openings.

DANGER!
Risk of flashover on unused, live bushings.
- Cover unused bushings with surge-proof caps.
Feeder without cables

⇒ Switch the switch-disconnector to EARTHED position and lock it, or cover the bushings with surge-proof caps.

Tyding up and visual inspection

⇒ Remove any attached instruction labels or documents that are not required anymore for operation.
⇒ Remove any tools, materials etc. that are not required anymore from the area of switchgear.
⇒ Remove any dirt from the area of the switchgear (cleaning agent ARAL 4005 or HAKU 1025/90 and lint-free rag/brush).
⇒ Fit all covers.
⇒ Put the caps on the capacitive test sockets.
⇒ Touch up scratches and impacts in the surface painting. Available kit: Touch-up set (spatula and paint) and paint pen.

15.2 Checking accessories

Make sure that the following accessories are ready to hand:
• Operating instructions
• Operating levers for three-position switches
• Hand crank for 3AH circuit-breaker
• Panel keys (double-bit keys)
• Circuit diagrams
• Warning signs

15.3 Instructing operating personnel

⇒ Instruct operating personnel in theory and practice of switchgear operation.

15.4 Function test / Test operation

DANGER!
Putting defective switchgear into operation can endanger the life of people and damage the switchgear.

⇒ Never put switchgear into operation if you notice during test operation that a part of it does not work as described in here.
⇒ Perform test operations with auxiliary voltage only!

DANGER!
Inadequate handling of the vacuum circuit-breaker can cause injuries by the motor starting suddenly when auxiliary voltage is applied.

⇒ Charge the vacuum circuit-breaker with the original hand crank only.
Mechanical function test

- Switch the three-position switch-disconnector / disconnecting circuit-breaker (type LST) and the vacuum circuit-breaker type 3AH several times to CLOSED, OPEN and EARTHED position, observing the correct indication of the associated switch position indicators.
- Test fuse tripping with test fuse.
- Check HV HRC fuse links.
- Check mechanical interlocks and covers to verify easy operation.

Adjusting undervoltage release to vacuum circuit-breaker type 3AH

- All undervoltage releases mounted in circuit-breakers type 3AH must still be adjusted to the associated circuit-breaker.

The circuit-breaker operating mechanism is located in the upper part of the panel behind the ON/OFF pushbuttons.

- Remove the front cover of the circuit-breaker.
- Shift the retaining bolt of the striker pin from position A to position B.

- Close the operating mechanism box and refit the cover.
- Now the circuit-breaker operating mechanism is ready for operation with undervoltage release.

Electrical function test

Test operation helps you to verify the perfect operation of the switchgear without high voltage before commissioning.

- Switch on all auxiliary and control voltages and verify correct polarity.
- The motor of the circuit-breaker operating mechanism (type 3AH) starts up and charges the closing spring.
Installation

- Test panels with electromagnetically interlocked three-position switch only with applied auxiliary voltage.
- Check whether the mechanical and/or electrical interlocking conditions are fulfilled without using excessive force.
- Check whether the switch positions of the three-position switches are displayed correctly.
- Switch the three-position switch-disconnector / disconnecting circuit-breaker (type LST) and the vacuum circuit-breaker type 3AH several times to CLOSED, OPEN and EARTHED position for test at the panel and from remote. At the same time, check whether the switch positions are displayed correctly at the panel and, if applicable, in the control room, and if the auxiliary switches and position switches operate correctly.
- Check the operation of the existing shunt closing and shunt opening releases electrically.

Malfunction during test operation

If there are any faults that cannot be cleared at site:
- Do not put the switchgear into operation.

Completing test operation

- Switch all switching devices to OPEN position.

15.5 Preparing the power-frequency voltage test

On request, a power-frequency voltage test can be performed at site on the ready-assembled switchgear. In this case, prepare the test as follows:

- Remove voltage transformers (see Page 86, “Connecting voltage transformers at the cable feeder” and see Page 88, “Installing/removing busbar voltage transformers”) as well as surge arresters and surge limiters.
- Protect bushings of transformers, surge arresters and surge limiters in a surge-proof way using suitable sealing caps.
- Earth the capacitive test sockets.
- Now you can carry out the test.
15.6 Applying operational voltage (high voltage)

The operating personnel must have been instructed, the installation work checked, and test operation must have been performed without faults.

- Close all covers.
- Make sure that the capacitive test sockets are covered with caps.
- Switch the three-position switch-disconnectors / disconnecting circuit-breakers (type LST) of all panels to “O” position. (If there is a feeder without connected cables, earth this feeder and padlock it, if possible).
- Open all 3AH circuit-breakers (see Page 108, “Circuit-breaker panels: Operating vacuum circuit-breaker type 3AH”).
- Reset short-circuit indicators.
- Make sure that all consumers connected to all feeders are switched off and that the three-position switch-disconnector / disconnecting circuit-breaker (type LST) of the incoming feeder is in OPEN position.

Now you can apply operational high voltage and put the switchgear into operation as described hereafter.

Verification of correct terminal-phase connections / Connecting incoming feeder

The three-position switch-disconnector / disconnecting circuit-breaker (type LST) of the feeder to be tested must be in “OPEN” position. The opposite substation must be de-earthed and live.

Verify correct terminal-phase connections using a phase comparison test unit at the capacitive test sockets of the panel to be tested and a panel that has already been connected.
Installation

- Plug the measuring cables of the phase comparison test unit into the "L1" test sockets of the two panels.

- Read the display.
- Proceed in the same way with the test sockets of the two other phases ("L2" and "L3").
- If the test unit shows "coincidence" in any case, the phase sequence of the tested feeder is correct.

Applying voltage to the busbar
- First, apply voltage from opposite substation.
- Connect incoming feeders in respective opposite substation.
- Connect one incoming feeder to the busbar (see Page 103, "Operating the three-position switch-disconnector/disconnecting circuit-breaker (type LST)").
- Now the busbar of the switchgear is live.

Connecting consumer feeders
When all incoming feeders are connected:
- One after the other, switch on all outgoing feeders with connected consumers only.
- Now all feeders are connected; the switchgear is completely in operation.
Operation

<table>
<thead>
<tr>
<th>DANGER!</th>
</tr>
</thead>
<tbody>
<tr>
<td>The internal arc classification of the switchgear according to IEC 62271-200 has only been proved by tests for the switchgear sides with internal arc classification and with closed high-voltage compartments.</td>
</tr>
</tbody>
</table>

- Determine the IAC of the switchgear by means of the data on the rating plate (see Page 45, "Rating plates").
- Regulations for access to switchgear areas without internal arc classification according to IEC 62271-200 must be defined by the entrepreneur or the switchgear owner.
Indicators and control elements

Fig. 54: 8DH

1. Cover of niche for customer-side low-voltage equipment
2. Operating cycle counter for 3AH circuit-breaker
3. “Spring charged” indication for 3AH circuit-breaker
4. Manual charging for 3AH circuit-breaker
5. ON-pushbutton for 3AH circuit-breaker
6. OFF-pushbutton for 3AH circuit-breaker
7. HV HRC fuse compartment cover
8. Interlock for HV HRC fuse assembly
9. Feeder designation labels
10. Locking device (option for three-position switch-disconnector/disconnecting circuit breaker)
11. Manual operation for switch-disconnector/disconnecting circuit-breaker mechanism
12. Manual operation for earthing switch mechanism
13. Interlock of cable compartment cover
14. Cable compartment cover
15. Rating plate
16. Sockets of voltage detection system
17. Short-circuit/earth-fault indicator
18. Local/remote switch for motor-operated mechanism (option)
19. Switch position indicator of the three position switch-disconnector/disconnecting circuit-breaker
20. Switch position indicator of the earthing switch
21. Ready-for-service indicator
17 Operating the three-position switch-disconnector/disconnecting circuit-breaker (type LST)

DANGER!
During operation of electrical equipment and switchgear, parts of this equipment are under dangerous electrical voltage. Mechanical components may move quickly, even remotely controlled.
- Do not remove covers.
- Do not reach into openings.

DANGER!
If the gas filling is insufficient, this can cause personal injuries and material damages.
- Check ready-for-service indicator before performing any switching operation: the ready-for-service indicator must be in the green area.

If the indicator is in the red area:
- Do not switch
- Isolate the switchgear and put it out of service

ATTENTION!
Earthing a live incoming cable will trip the upstream circuit-breaker.
- Verify safe isolation from supply of the feeder before earthing.
17.1 Operations

Fig. 56: Operating lever with red handle for earthing and de-earthing, with black handle for load breaking / circuit-breaking/disconnecting. Alternatives: One-lever operation and anti-reflex lever (reversing the switching direction requires re-inserting the operating lever).

⇒ Check ready-for-service indicator ④.
⇒ Remove padlock ③ (optional).
⇒ Operate control gate ② (optional) to release the switching gate and hold it tight.
⇒ Insert operating lever ① and move straight to the desired switch position.
⇒ Remove operating lever. Control gate will automatically return to central position.
⇒ Refit padlock at desired position.
✔ The locking device (option) of the switching gate can be padlocked in all three switch positions.
17.2 Protection tripping for the three-position switch-disconnector with spring-operated/stored-energy mechanism

<table>
<thead>
<tr>
<th>Padlock</th>
<th>left</th>
<th>centre</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lever positions</td>
<td>right or centre</td>
<td>centre</td>
<td>left or centre</td>
</tr>
<tr>
<td>Possible switching operation</td>
<td>only “EARTHING” and “DE-EARTHING” possible</td>
<td>no switching operations possible</td>
<td>only switch-disconnector/disconnecting circuit-breaker “CLOSED” and “OPEN” possible</td>
</tr>
</tbody>
</table>

NOTE!

- If the opening spring of the transformer switch was tripped by a shunt release or a fuse-link:
 - The switch position indicator of the switch-disconnector shows an additional red bar.
 - The operating lever at the operating mechanism is still in CLOSED position.
 - The motor operating mechanism (option) is out of operation.

Re-establishing service readiness

- Insert the operating lever and switch the operating mechanism from CLOSED to OPEN. The opening spring is recharged and earthing is prepared.
 - If required, replace fuse-links, otherwise the operating mechanism will immediately be tripped again as the tripping command is still active through the striker.
17.3 Protection tripping with the three-position disconnecting circuit-breaker (type LST)

NOTE!

Manual operating mechanism: If the opening spring of the three-position disconnecting circuit-breaker (type LST) was tripped by the protection relay or the shunt release:

- The switch position indicator of the disconnecting circuit-breaker (type LST) shows an additional red bar.
- The operating lever at the operating mechanism is still in CLOSED position.

Re-establishing service readiness

- Insert the operating lever and switch the operating mechanism from CLOSED to OPEN position. The opening spring is recharged when the operating mechanism is operated.
- The disconnecting circuit-breaker (type LST) is ready for the next closing operation.

NOTE!

Motor operating mechanism: If the opening spring of the three-position disconnecting circuit-breaker (type LST) was tripped by the protection relay or the shunt release:

- The faulty position indication is cleared automatically by the motor operating mechanism.
- The operating mechanism is immediately reset to OPEN position, recharging the stored-energy spring at the same time.

- Check the switch position indicator.
- The disconnecting circuit-breaker (type LST) is ready for the next CLOSE operation again.
17.4 Ring-main panels, transformer panels and disconnecting circuit-breaker panels (type LST): Operating the three-position switch

<table>
<thead>
<tr>
<th>Switching operation</th>
<th>Switching state before operation</th>
<th>Switching state after operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing switch-disconnector/ disconnecting circuit breaker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opening switch-disconnector/ disconnecting circuit breaker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De-earthing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
18 Circuit-breaker panels: Operating vacuum circuit-breaker type 3AH

Possible switching operations:
- Manual and local operation, i.e. at the panel itself
- Manual operation from remote, e.g. from the control room
- Automatic operation by the protection equipment installed

If the circuit-breaker panel is equipped with a motor-operating stored-energy mechanism, the closing spring is charged automatically after applying auxiliary voltage. The energy required for the switching sequence “OPEN - CLOSE - OPEN” (auto-reclosing) is available 15 seconds after closing the circuit-breaker.

If the circuit-breaker is equipped with a manual operating stored-energy mechanism, the closing spring has to be charged by hand (see Page 110, “Charging the stored-energy spring mechanism manually”).

If the circuit-breaker is equipped with a manual spring-operated mechanism, it can only be closed manually at the panel.

The opening spring is always charged during the closing process.

The control elements of the circuit-breaker type 3AH are located at the panel front, in the upper area of the control board.

Fig. 57: Control board of circuit-breaker panel
18.1 Closing the circuit-breaker locally

The method for closing the 3AH circuit-breaker depends on the panel equipment.

There are three different versions of the circuit-breaker operating mechanism available:

- Stored-energy spring mechanism
- Stored-energy spring mechanism with motor (option)
- Manual spring-operated mechanism

Closing with stored-energy mechanism

⇒ Make sure that the closing spring of the stored-energy mechanism is charged.

⇒ Operate the “ON”-pushbutton.

✓ In circuit-breakers with stored-energy mechanism, the motor (option) recharges the closing spring automatically. The energy required for the switching sequence OPEN-CLOSED-OPEN (auto-reclosure) is available after 15 seconds.

Closing with manual spring-operated mechanism

⇒ Remove the cover from the hand crank opening.

⇒ Insert the hand crank (standard accessories).

⇒ Turn the hand crank clockwise until the circuit-breaker closes (approx. 20 turns).

ATTENTION!

Due to the different number of operating cycles of the switching devices, load breaking operations should preferably be performed with the circuit-breaker. The maximum service life of the circuit-breaker panel depends on the permissible number of operating cycles of the switching devices used (see Page 34, “3AH vacuum circuit-breaker” and see Page 38, “Three-position switch-disconnector”).

⇒ Perform load breaking operations preferably with the circuit-breaker.
Operation

- Remove the hand crank.
- Refit the cover.

The switch position indicator of the circuit-breaker in the mimic diagram shows CLOSED position.

18.2 Opening the circuit-breaker locally

- Operate the “OFF”-pushbutton.

The switch-position indicator of the circuit-breaker in the mimic diagram shows OPEN position.

18.3 Charging the stored-energy spring mechanism manually

With manual operation or if the auxiliary voltage (motor operating mechanism) fails, the stored-energy spring mechanism must be charged manually. The closing spring is charged automatically after applying control voltage. The energy required for the switching sequence OPEN-CLOSED-OPEN (auto-reclosure) is stored in the closing spring 15 seconds after closing the circuit-breaker.

Tool required: Hand crank.
The opening for the hand crank is located top-left on the control board.

ATTENTION!
If the motor starts up suddenly, e.g. due to recovery voltage, the inserted hand crank can cause injuries if it is not provided with a freewheel.
- Use the original hand crank only.
- Remove the cover from the hand crank opening.
- Insert the hand crank.
- Turn the hand crank clockwise until the “spring charged” indication appears in the inspection window (black field with spring symbol).
- Remove the hand crank.
- Refit the cover.
- ✔ The closing spring of the circuit-breaker is charged. The circuit-breaker can be closed and opened again.
18.4 Closing the three-position switch-disconnector in the circuit-breaker panel (with type 3AH) (with optional interlock)

ATTENTION!

Due to the different number of operating cycles of the switching devices, load breaking operations should preferably be performed with the circuit-breaker. The maximum service life of the circuit-breaker panel depends on the permissible number of operating cycles of the switching devices used (see Page 34, “3AH vacuum circuit-breaker” and see Page 38, “Three-position switch-disconnector”).

- Perform load breaking operations preferably with the circuit-breaker.

- Push the circuit-breaker interrogation lever up.

- Push the control gate to the left. The actuating opening is free.

- Insert the operating lever and push it down. The switch-disconnector is closed.
Operation

- Remove the operating lever.
- The control gate returns to the centre position automatically. The circuit-breaker interrogation lever goes down. The actuating opening is closed.

18.5 Opening the three-position switch-disconnector in the circuit-breaker panel (with type 3AH) (with optional interlock)

ATTENTION!
Due to the different number of operating cycles of the switching devices, load breaking operations should preferably be performed with the circuit-breaker. The maximum service life of the circuit-breaker panel depends on the permissible number of operating cycles of the switching device used (see Page 34, “3AH vacuum circuit-breaker” and see Page 38, “Three-position switch-disconnector”).

- Perform load breaking operations preferably with the circuit-breaker.
- Push the circuit-breaker interrogation lever up.
Operation

⇒ Push the control gate to the left. The actuating opening is free.

⇒ Insert the operating lever and push it up. The switch-disconnector is open.

⇒ Remove the operating lever.

⇒ The control gate returns to the centre position automatically. The circuit-breaker interrogation lever goes down. The actuating opening is closed.
18.6 Three-position switch-disconnector in circuit-breaker panel (with type 3A.H): Switch position EARTHED (with optional interlock)

☞ Push the control gate to the right. The actuating opening is free.

☞ Insert the operating lever and push it up. The circuit-breaker panel is earthed.

☞ Remove the operating lever.

☞ The control gate returns to the centre position automatically. The actuating opening is closed.
18.7 Three-position switch-disconnector in circuit-breaker panel (with type 3AH): Switch position DE-EARTHED (with optional interlock)

- Push the control gate to the right. The actuating opening is free.

- Insert the operating lever and push it down. The circuit-breaker panel is de-earthed.

- Remove the operating lever.

- The control gate returns to the centre position automatically. The actuating opening is closed.
Verification of safe isolation from supply

HR/LRM system

- **Remove cover from capacitive interface.**
- **Insert voltage indicators in the test sockets of the capacitive interface. If the indicator does not flash or light up in any case, the feeder is not live. The feeder can be earthed. If the indicator flashes or lights up, the feeder is live.**
- **Refit covers of capacitive test sockets to protect them from pollution.**

Indicators CAPDIS-S1+/S2+

- **Verify safe isolation from supply on the display of CAPDIS-S1+/S2+ (see Page 22, “Voltage detecting systems”).**

DANGER!

Mortal danger if safe isolation from supply is verified incorrectly!

- **Verify the perfect function of the voltage indicator and the coupling section in accordance with national standards**
 - on live equipment
 - with a test unit according to IEC 61243-5/EN 61243-5
 - on all poles

- **Use only voltage indicators or devices to test the function of the coupling section according to EN 61 243-5 / IEC 61 243-5 / VDE 0682-415.** (There have been no changes as against the old standard VDE 0681 Part 7 regarding the interface conditions, so that the corresponding indicators can still be used.)

- **Perform repeat test of interface conditions at the capacitive interfaces, as well as on the indicators according to the customer’s specifications or national standards.**

- **Do not use short-circuiting jumpers as separate plugs. The function of the surge arrester installed is not guaranteed anymore if short-circuiting jumpers are used (see Page 22, “Voltage detecting systems”).**
20 Replacing HV HRC fuse links

An overview of suitable HV HRC fuse links is given on (see Page 17, “HV HRC fuse assembly” and see Page 40, “Selection of HV HRC fuse links”).

Trip indication for HV HRC fuse / shunt release (f-release)

Removing the cover of the HV HRC fuse compartment

The HV HRC fuse compartment cover can only be released if the earthing switch is in EARTHED position.

When the HV HRC fuse compartment cover is released, the earthing switch is interlocked in EARTHED position.

In case of motor operation (option) the electrical voltage supply must be interrupted.

Work operations

- Isolate and earth transformer feeder.
- Push unlocking lever of HV HRC fuse compartment cover to the left, unhinge cover and remove upwards.
Withdrawing the fuse slide

ATTENTION!

HV HRC fuse links may be hot!

⇒ Let HV HRC fuse links cool down or wear gloves to withdraw the fuse slide.

⇒ Withdraw the fuse slide with the HV HRC fuse link.

Replacing HV HRC fuse links

If one HV HRC fuse has tripped, always replace the fuses in all three phases.

ATTENTION!

Incorrectly selected or mounted fuse links and extension tubes can damage the fuse box or the switchgear.

⇒ 7.2 kV fuse links with dimension 192 mm and 24 kV fuse links with dimension 292 mm are not permissible.

⇒ Take HV HRC fuse links out of the contact springs.

⇒ Fit new HV HRC fuse links into the contact springs observing the striker pin position. The arrow on the HV HRC fuse points to the housing cover.

⇒ If extension tubes are necessary, these must always be mounted on the opposite side of the housing cover.
Inserting the HV HRC fuse slide

ATTENTION!

Incorrectly selected or mounted fuse links and extension tubes can damage the fuse box or the switchgear.

- 7.2 kV fuse links with dimension 192 mm and 24 kV fuse links with dimension 292 mm are not permissible.

Push the HV HRC fuse slide into the guide slot of the HV HRC fuse box until it latches tight.

Closing the HV HRC fuse compartment cover

- Fit the HV HRC fuse compartment cover from above and let it slip down. The cover will protrude approx. 3 cm at the bottom.

- Press the lower part of the HV HRC fuse compartment cover against the switchgear. Due to the rail provided at the rear, the cover can only be closed if the HV HRC fuse slides have latched in correctly.

- Push the locking bar at the control board to the right. In this way, the cover is locked again and the interlock of the earthing switch is released.
21 Cable testing

211 Cable testing via plug-in cable systems

DANGER!
Cable testing with connected cables always represents a special stress for the isolating distance. If the busbar of the switchgear under test or the opposite substation are live with operating voltage, adequate measures must be taken in order to prevent overvoltages. Normally, the switch-disconnector is not interlocked during the cable test.

- Fit switching prohibition signs.
- Secure closing lock-out (option) with a lock.

DANGER!
In cable panels type K, the switching operation for the EARTHED position has no influence on the voltage state of the radial cable behind the screwed-on cable compartment cover.

- Before removing the screwed-on cable compartment cover, isolate and earth the radial cable in the opposite substation.

Isolating and earthing the feeder under test

- Disconnect the feeder under test.
- Make sure that the feeder in the opposite substation has also been isolated and secured against reclosing.
- Verify safe isolation from supply.
- Earth the feeder.

Preparations
- Remove the cable compartment cover.
- Undo the screw-type cone ① at the T-plug or at the adapter.
- Fit cable test equipment (e.g. measuring bolts) according to the operating instructions of the plug manufacturers.
Testing

Maximum values for the test voltage:

<table>
<thead>
<tr>
<th>Rated voltage of the switchgear [kV]</th>
<th>DC test voltage, maximum value [kV]</th>
<th>AC test voltage VLF* 0.1 Hz, maximum value [kV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>48</td>
<td>19</td>
</tr>
<tr>
<td>24</td>
<td>70</td>
<td>38</td>
</tr>
</tbody>
</table>

* Very Low Frequency

ATTENTION!

Cables, cable plugs and voltage detecting systems may be damaged by too high test voltages.

- Observe the manufacturer’s instructions for the cables, cable plugs and voltage detecting systems (maximum test values).

- De-earth.
- Perform the test in accordance with the cable manufacturers’ recommendations or the customers’ specifications.

After completion of test

- Earth the feeder under test
- Remove cable test elements.
- Clean the screw-type cone, apply mounting paste and mount it on the T-plug according to the manufacturer’s instructions.
- Fit and lock the cable compartment cover.
- De-earth the feeder in the switchgear and in the opposite substation and switch the feeder on again.
21.2 Cable sheath testing

DANGER!

Normally, the switch-disconnector panel is not interlocked during the cable sheath test. Prevent switching from EARTHED to OPEN or CLOSED position as follows:

- Fit switching prohibition signs.
- Secure the locking device (option) with a lock.

DANGER!

In cable panels type K, the switching operation for the EARTHED position has no influence on the voltage state of the radial cable behind the screwed-on cable compartment cover.

- Before removing the screwed-on cable compartment cover, isolate and earth the radial cable in the opposite substation.

Work operations

- Isolate and earth the feeder under test.
- Remove the cable compartment cover.
- De-earth the cable shield at the cross member of the subframe as well as in the opposite substation.
- Perform the cable sheath test according to the manufacturer’s instructions or the customer’s specifications.
- Earth the cable shield again at the cross member of the subframe as well as in the opposite substation.
- Refit and lock the cable compartment cover.
- De-earth the feeder in the switchgear and in the opposite substation and switch the feeder on again.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Undervoltage release</td>
</tr>
<tr>
<td>U</td>
<td>Undervoltage release, circuit-breaker adjustment (commissioning)</td>
</tr>
<tr>
<td>U</td>
<td>Unloading the switchgear</td>
</tr>
<tr>
<td>V</td>
<td>Vacuum circuit-breaker</td>
</tr>
<tr>
<td>V</td>
<td>Vacuum circuit-breaker, closing solenoid</td>
</tr>
<tr>
<td>V</td>
<td>Vacuum circuit-breaker, motor operating mechanism</td>
</tr>
<tr>
<td>V</td>
<td>Vacuum circuit-breaker, operating times</td>
</tr>
<tr>
<td>V</td>
<td>Vacuum circuit-breaker, shunt releases</td>
</tr>
<tr>
<td>V</td>
<td>Varistor module</td>
</tr>
<tr>
<td>V</td>
<td>Voltage detecting systems</td>
</tr>
<tr>
<td>V</td>
<td>Voltage transformers, connecting at the cable feeder</td>
</tr>
<tr>
<td>W</td>
<td>Weights</td>
</tr>
</tbody>
</table>
Impressum

Siemens AG
Energy Sector
Division Power Distribution
Schaltanlagenwerk Frankfurt
Carl-Benz-Str. 22
D-60386 Frankfurt
© Siemens AG 2008